Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data reduction" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analiza czynnikowa zdjęć wielospektralnych
Principal component analysis of multispectral images
Autorzy:
Czapski, P.
Kotlarz, J.
Kubiak, K.
Tkaczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/213759.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
PCA
metody statystyczne
bioróżnorodność
krzywe blasku
redukcja danych
statistical methods
biodiversity
light curves
data reduction
Opis:
Analiza zdjęć wielospektralnych sprowadza się często do modelowania matematycznego opartego o wielowymiarowe przestrzenie metryczne, w których umieszcza się pozyskane za pomocą sensorów dane. Tego typu bardzo intuicyjne, łatwe do zaaplikowania w algorytmice analizy obrazu postępowanie może skutkować zupełnie niepotrzebnym wzrostem niezbędnej do analiz zdjęć mocy obliczeniowej. Jedną z ogólnie przyjętych grup metod analizy zbiorów danych tego typu są metody analizy czynnikowej. Wpracy tej prezentujemy dwie z nich: Principal Component Analysis (PCA) oraz Simplex Shrink-Wrapping (SSW). Użyte jednocześnie obniżają znacząco wymiar zadanej przestrzeni metrycznej pozwalając odnaleźć w danych wielospektralnych charakterystyczne składowe, czyli przeprowadzić cały proces detekcji fotografowanych obiektów. W roku 2014 w Pracowni Przetwarzania Danych Instytutu Lotnictwa oraz Zakładzie Ochrony Lasu Instytutu Badawczego Leśnictwa metodykę tą równie skutecznie przyjęto dla analizy dwóch niezwykle różnych serii zdjęć wielospektralnych: detekcji głównych składowych powierzchni Marsa (na podstawie zdjęć wielospektralnych pozyskanych w ramach misji EPOXI, NASA) oraz oszacowania bioróżnorodności jednej z leśnych powierzchni badawczych projektu HESOFF.
Mostly, analysis of multispectral images employs mathematical modeling based on multidimensional metric spaces that includes collected by the sensors data. Such an intuitive approach easily applicable to image analysis applications can result in unnecessary computing power increase required by this analysis. One of the groups of generally accepted methods of analysis of data sets are factor analysis methods. Two such factor analysis methods are presented in this paper, i.e. Principal Component Analysis (PCA ) and Simplex Shrink - Wrapping (SSW). If they are used together dimensions of a metric space can be reduced significantly allowing characteristic components to be found in multispectral data, i.e. to carry out the whole detection process of investigated images. In 2014 such methodology was adopted by Data Processing Department of the Institute of Aviation and Division of Forest Protection of Forest Research Institute for the analysis of the two very different series of multispectral images: detection of major components of the Mars surface (based on multispectral images obtained from the epoxy mission, NASA) and biodiversity estimation of one of the investigated in the HESOFF project forest complexes.
Źródło:
Prace Instytutu Lotnictwa; 2014, 1 (234) March 2014; 143-150
0509-6669
2300-5408
Pojawia się w:
Prace Instytutu Lotnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An effective data reduction model for machine emergency state detection from big data tree topology structures
Autorzy:
Iaremko, Iaroslav
Senkerik, Roman
Jasek, Roman
Lukastik, Petr
Powiązania:
https://bibliotekanauki.pl/articles/2055178.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
OPC UA
OPC tree
principal component analysis
PCA
big data analysis
data reduction
machine tool
anomaly detection
emergency states
analiza głównych składowych
duży zbiór danych
redukcja danych
wykrywanie anomalii
stan nadzwyczajny
Opis:
This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 601--611
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel approach for big data classification based on hybrid parallel dimensionality reduction using spark cluster
Autorzy:
Ali, Ahmed Hussein
Abdullah, Mahmood Zaki
Powiązania:
https://bibliotekanauki.pl/articles/305766.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
big data
dimensionality reduction
parallel processing
Spark
PCA
LDA
Opis:
The big data concept has elicited studies on how to accurately and efficiently extract valuable information from such huge dataset. The major problem during big data mining is data dimensionality due to a large number of dimensions in such datasets. This major consequence of high data dimensionality is that it affects the accuracy of machine learning (ML) classifiers; it also results in time wastage due to the presence of several redundant features in the dataset. This problem can be possibly solved using a fast feature reduction method. Hence, this study presents a fast HP-PL which is a new hybrid parallel feature reduction framework that utilizes spark to facilitate feature reduction on shared/distributed-memory clusters. The evaluation of the proposed HP-PL on KDD99 dataset showed the algorithm to be significantly faster than the conventional feature reduction techniques. The proposed technique required >1 minute to select 4 dataset features from over 79 features and 3,000,000 samples on a 3-node cluster (total of 21 cores). For the comparative algorithm, more than 2 hours was required to achieve the same feat. In the proposed system, Hadoop’s distributed file system (HDFS) was used to achieve distributed storage while Apache Spark was used as the computing engine. The model development was based on a parallel model with full consideration of the high performance and throughput of distributed computing. Conclusively, the proposed HP-PL method can achieve good accuracy with less memory and time compared to the conventional methods of feature reduction. This tool can be publicly accessed at https://github.com/ahmed/Fast-HP-PL.
Źródło:
Computer Science; 2019, 20 (4); 411-429
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies