Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kotlarz, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Algorytm automatycznego oszacowania zróżnicowania gatunkowego drzewostanu z wykorzystaniem zdjęć RGB koron drzew
Species diversity of forest stands estimation algorithm using RGB images of the tree crowns
Autorzy:
Kotlarz, J.
Kacprzak, M.
Powiązania:
https://bibliotekanauki.pl/articles/276150.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
bioróżnorodność
algorytmika
PCA
teledetekcja
klasyfikacja
ISOCLASS
leśnictwo
biodiversity
algorithmic
remote sensing
classification
forestry
Opis:
Ocena różnorodności gatunkowej ekosystemów jest jednym z fundamentalnych działań mających na celu ochronę naturalnych siedlisk, ich zdrowotności i użyteczności dla człowieka. W artykule zaproponowany został algorytm oszacowania wskaźnika Shannona-Wienera różnorodności drzewostanów za pomocą analizy statystycznej (PCA) oraz klasyfikacji (ISOCLASS) zdjęć RGB. Wykonanie zdjęć nie wymaga stosowania drogiego sprzętu i przy zachowaniu odpowiednich warunków oświetleniowych może być użyteczne w bieżącym monitoringu drzewostanów. Z drugiej strony, wskaźniki różnorodności wymagają walidacji in-situ. Algorytm posłużył w sierpniu 2016 r. do oszacowania różnorodności drzew w rezerwacie “Młochowski Grąd”. Za pomocą aparatu fotograficznego zintegrowanego z telefonem Microsoft Lumia 550 pozyskano 24 zdjęcia koron drzew w sześciu wchodzących w skład rezerwatu wydzieleniach leśnych. W wydzieleniu o najwyższej różnorodności wynik otrzymany za pomocą algorytmu ze względu na brak możliwości objęcia na pojedynczych zdjęciach wszystkich obecnych w nim gatunków nie odzwierciedlił faktycznego zróżnicowania drzewostanu. W pięciu wydzieleniach otrzymane wyniki były zbieżne z danymi in-situ zawartymi w Banku Danych o Lasach (współczynnik korelacji Pearsona = 0,967).
Global measurement of ecosystems species diversity is one of the fundamental postulates in natural habitats healthiness and usefulness protection. In the article an algorithm to estimate the Shannon-Wiener forest stands biodiversity indicator has been proposed. The algorithm includes statistical analysis (PCA) and classification methodology (ISOCLASS) for simple RGB images. Getting RGB images does not require the use of expensive hardware. Taking into account the sunlight conditions RGB images can be useful in the continuous forest stands monitoring. In August 2016 an attempt was made to estimate the diversity of the trees in the “Młochowski Grad” nature reserve using proposed in this article algorithm. Using camera integrated with a Microsoft Lumia 550 smartphone 24 images of trees crowns were acquired in the all six reserve forest stands. In the one stand with the highest crowns diversity the algorithms result does not agree with Forest Data Bank in-situ estimation. In the other five stands the results were consistent with the data in the Forest Data Bank (Pearson correlation index = 0.967).
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 1; 63-70
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza czynnikowa zdjęć wielospektralnych
Principal component analysis of multispectral images
Autorzy:
Czapski, P.
Kotlarz, J.
Kubiak, K.
Tkaczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/213759.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
PCA
metody statystyczne
bioróżnorodność
krzywe blasku
redukcja danych
statistical methods
biodiversity
light curves
data reduction
Opis:
Analiza zdjęć wielospektralnych sprowadza się często do modelowania matematycznego opartego o wielowymiarowe przestrzenie metryczne, w których umieszcza się pozyskane za pomocą sensorów dane. Tego typu bardzo intuicyjne, łatwe do zaaplikowania w algorytmice analizy obrazu postępowanie może skutkować zupełnie niepotrzebnym wzrostem niezbędnej do analiz zdjęć mocy obliczeniowej. Jedną z ogólnie przyjętych grup metod analizy zbiorów danych tego typu są metody analizy czynnikowej. Wpracy tej prezentujemy dwie z nich: Principal Component Analysis (PCA) oraz Simplex Shrink-Wrapping (SSW). Użyte jednocześnie obniżają znacząco wymiar zadanej przestrzeni metrycznej pozwalając odnaleźć w danych wielospektralnych charakterystyczne składowe, czyli przeprowadzić cały proces detekcji fotografowanych obiektów. W roku 2014 w Pracowni Przetwarzania Danych Instytutu Lotnictwa oraz Zakładzie Ochrony Lasu Instytutu Badawczego Leśnictwa metodykę tą równie skutecznie przyjęto dla analizy dwóch niezwykle różnych serii zdjęć wielospektralnych: detekcji głównych składowych powierzchni Marsa (na podstawie zdjęć wielospektralnych pozyskanych w ramach misji EPOXI, NASA) oraz oszacowania bioróżnorodności jednej z leśnych powierzchni badawczych projektu HESOFF.
Mostly, analysis of multispectral images employs mathematical modeling based on multidimensional metric spaces that includes collected by the sensors data. Such an intuitive approach easily applicable to image analysis applications can result in unnecessary computing power increase required by this analysis. One of the groups of generally accepted methods of analysis of data sets are factor analysis methods. Two such factor analysis methods are presented in this paper, i.e. Principal Component Analysis (PCA ) and Simplex Shrink - Wrapping (SSW). If they are used together dimensions of a metric space can be reduced significantly allowing characteristic components to be found in multispectral data, i.e. to carry out the whole detection process of investigated images. In 2014 such methodology was adopted by Data Processing Department of the Institute of Aviation and Division of Forest Protection of Forest Research Institute for the analysis of the two very different series of multispectral images: detection of major components of the Mars surface (based on multispectral images obtained from the epoxy mission, NASA) and biodiversity estimation of one of the investigated in the HESOFF project forest complexes.
Źródło:
Prace Instytutu Lotnictwa; 2014, 1 (234) March 2014; 143-150
0509-6669
2300-5408
Pojawia się w:
Prace Instytutu Lotnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies