Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "large system" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Exact Analytical Solutions of Nonlinear Differential Equation of a Large Amplitude Simple Pendulum
Autorzy:
Sobamowo, M. G.
Powiązania:
https://bibliotekanauki.pl/articles/1030465.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Exact Analytical solution
Large amplitude
Oscillation system
Strong nonlinearity
Opis:
The governing equation of large amplitude simple pendulum is a nonlinear equation which is very difficult to be solved exactly and analytically. However, the classical way for finding analytical solution is obviously still very much important. This is because an exact analytical solution serves as an accurate benchmark for numerical solution and provides a better insight into the significance of various system parameters affecting the phenomena than the numerical solution. Therefore, in this present work, exact analytical solutions for nonlinear differential equation of large amplitude simple pendulum is presented. Also, with the aid of the exact analytical solutions, parametric studies are carried out to study the effects of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The solutions can serve as benchmarks for the numerical solution or approximate analytical solution.
Źródło:
World Scientific News; 2020, 144; 70-88
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Efficiency of Differential Transformation Method to the Solutions of Large Amplitude Nonlinear Oscillation Systems
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Alozie, S. I.
Salawu, S. A.
Salami, M. O.
Powiązania:
https://bibliotekanauki.pl/articles/1031949.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytical solution
Differential transformation method
Large amplitude
Oscillation system
Strong nonlinearity
Opis:
In this work, the efficiency of differential transformation method to the solutions of large amplitude nonlinear oscillatory systems is further established. Two cases of oscillation systems, nonlinear plane pendulum and pendulum in a rotating plane are considered. Without any linearization, discretization or series expansion of the sine and cosine of the angular displacement in the nonlinear models of the systems, the differential transformation method with Padé approximant is used to provide analytical solutions to the nonlinear problems. Also, the increased predictive power and the high level of accuracy of the differential transformation method over the previous methods are presented. The extreme accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through comparison of the results of the solution with the corresponding numerical solutions obtained by fourth-fifth-order Runge-Kutta method. Also, with the aid of the analytical solutions, parametric studies were carried to study the impacts of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The method avoids any numerical complexity and it is very simple, suitable and useful as a mathematical tool for dealing the nonlinear problems.
Źródło:
World Scientific News; 2020, 139, 1; 1-60
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies