- Tytuł:
- On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$
- Autorzy:
-
Zheng, Guo-Ping
Shen, Yu-Fa
Chen, Zuo-Li
Lv, Jin-Feng - Powiązania:
- https://bibliotekanauki.pl/articles/744583.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
list coloring
complete multipartite graphs
chromatic-choosable graphs
Ohba's conjecture - Opis:
- A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba's conjecture is true for complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$ for all integers t ≥ 1 and k ≥ 2t+2, that is, $ch(K_{4,3*t,2*(k-2t-2),1*(t+1)}) = k$, which extends the results $ch(K_{4,3,2*(k-4),1*2}) = k$ given by Shen et al. (Discrete Math. 308 (2008) 136-143), and $ch(K_{4,3*2,2*(k-6),1*3}) = k$ given by He et al. (Discrete Math. 308 (2008) 5871-5877).
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 237-244
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki