Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wójtowicz, P." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Wzmocnienie procesu klasyfikacji obiektowej wielospektralnych ortofotomap lotniczych danymi z lotniczego skanowania laserowego
Enhancing the obia classification of multispectral aerial orthoimages using airborne laser scanning data
Autorzy:
Wężyk, P.
Mlost, J.
Pierzchalski, M.
Wójtowicz-Nowakowska, A.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/129858.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
ortofotomapa cyfrowa
lotniczy skaning laserowy
projekt ISOK
object-based image analysis
digital aerial orthophoto
Airborne Laser Scanning
ISOK
Opis:
Klasyfikacja obiektowa (OBIA, ang. Object Based Image Analysis) jest nowatorską metodą analizy zobrazowań teledetekcyjnych, w której homogeniczne obiekty (segmenty), na które podzielony został obraz (za pomocą specyficznych algorytmów) poddawane są klasyfikacji. Dotychczasowe projekty wykazały, iż OBIA przeprowadzana na wysokorozdzielczych i wielospektralnych lotniczych ortofotomapach cyfrowych, wspierana modelami wysokościowymi, prowadzi do uzyskania bardzo dokładnych wyników. Stosunkowo niewiele prac koncentruje się na określeniu wpływu produktów pochodnych chmury punktów lotniczego skanowania laserowego (ang. Airborne Laser Scanning), takich jak wartość: odchylenia standardowego wysokości, gęstości punktów czy intensywności odbicia, na poprawę wyników klasyfikacji OBIA. W prezentowanej pracy poddano ocenie wzmocnienie procesu klasyfikacji OBIA danymi ALS na podstawie dwóch transektów badawczych („A” oraz „B”) o powierzchni 3 km2, położonych w okolicach Włocławka. Celem końcowym procesu analizy OBIA było uzyskanie aktualnej mapy klas pokrycia terenu. W opracowaniu wykorzystano lotnicze ortofotomapy cyfrowe oraz dane z lotniczego skaningu laserowego, pozyskane na przełomie sierpnia I września 2010 roku. Na podstawie punktów danych ALS wygenerowano warstwy pochodne takie jak: liczba odbić, intensywność, odchylenie standardowe, jak również wygenerowano znormalizowany Numeryczny Modelu Powierzchni Terenu (zNMPT). W wariancie pierwszym „I” wykorzystano dane uzyskane wyłącznie w nalocie fotogrametrycznym, tj. wielospektralne ortofotomapy lotnicze (kamera Vexcel) oraz indeksy roślinności (w tym NDVI i in.). Wariant drugi prac ”II” zakładał wykorzystanie dodatkowo danych z lotniczego skaningu laserowego. Określona dokładność klasyfikacji OBIA wykonanej w oparciu o cyfrową ortofotomapę lotniczą wyniosła 91.6% dla transektu badawczego „A” oraz 93.1% dla transektu „B”. Użycie danych ALS spowodowało podniesienie dokładności ogólnej do poziomu 95.0% („A”) oraz 96.9% („B”). Praca wykazała, iż zastosowanie danych ALS podnosi dokładność klasyfikacji segmentów o bardzo zbliżonych właściwościach spektralnych (np. rozróżnienie powierzchni dużych, płaskich dachów budynków od parkingów czy klas roślinności niskiej od średniej i wysokiej. Wprowadzenie warstw pochodnych ALS do procesu segmentacji poprawia także kształt powstających obiektów a tym samym klas końcowych. Analiza „surowych” danych ALS w postaci plików w formacie LAS otwiera dodatkowe możliwości, których nie daje wykorzystywanie rastrowych warstw takich jak zNMPT. Pojawiająca się w nowej wersji oprogramowania eCognition (TRIMBLE) możliwość operowania segmentami przestrzennymi jeszcze te możliwości klasyfikacji podnosi. Niewątpliwie sporym problemem w integracji informacji spektralnej (ortoobraz) oraz geometrycznej (ALS) jest efekt rzutu środkowego skutkujący przesunięciami radialnymi dla wysokich obiektów leżących w znacznej odległości od punktu głównego zdjęcia.
Object Based Image Analysis (OBIA) is an innovative method of analyzing remote sensing data based not on the pixels, but on homogenous features (segments) generated by specific algorithms. OBIA based on high-resolution aerial orthophotography and powered by digital terrain models (nDSM) brings high accuracy analysis. Not many scientific papers brings implementation of ALS point cloud directly into OBIA image processing. Paper present study done on two test areas of approx. 3 km2, situated close to Wloclawek, representing different land use classes (transect “A” – urban area; transect “B” – rural and forest landscape). Geodata (digital aerial orthophotographs and Airborne Laser Scanning data) were captured almost at the same time (September 2010). Different raster layers were created from *. LAS file, like: intensity, number of returns, normalized elevation (nDSM). Two version (I and II) of OBIA classification were performed. First version (I) based only on aerial orthophotographs and different coefficients (like NDVI). Second variant of OBIA (wariant II) based additionally on ALS data. Total accuracy of variant I was 94.1% (transect “A”) and 92.6% (transect “B”). OBIA classification powered by ALS data provide to increase of the results up to 96.9% (transect “A”) and 95.0% (transect “B”) as well. Classification of objects with similar type of surface properties (like buildings and bare soil) was much better using ALS information. The ALS data improve also the shape of objects, that there are more realistic. Data fusion in OBIA processing brings new capabilities,. These capabilities are bigger thanks to processing based on 3-dimensional segments. The results of analysis would be more accurate, when orthoimages (“true ortho”) would be used, instead of standard orthophotographs. The running ISOK project in Poland will bring soon a huge data set (approx. 150 TB) of ALS and photogrammetry connected products. This situation requires suitable software to analyze it fast and accurate on the full automatic way. The OBIA classification seems to be a solution for such challenge.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 467-476
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu metodą OBIA z wykorzystaniem zobrazowań satelitarnych RapidEye
Land cover mapping based on OBIA of RapidEye satellite data
Autorzy:
Wężyk, P.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/131104.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
wysokorozdzielcze zobrazowania satelitarne
RapidEye
analiza obiektowa obrazu
OBIA
segmentacja
eCognition
pokrycie terenu
high-resolution satellite images
object-based image analysis
segmentation
land use
land cover
Opis:
Wraz z rozwojem teledetekcji i wysokorozdzielczych obrazów satelitarnych istotnym wyzwaniem dla współczesnych badań stało się zautomatyzowanie procesu klasyfikacji pozyskiwanych danych. Jedną z bardzo szybko rozwijających się metod automatycznej klasyfikacji jest analiza obiektowa obrazu (OBIA, ang. Object Based Image Analysis). Celem pracy było wykorzystanie metody OBIA w przygotowaniu aktualnej mapy pokrycia terenu będącej ważnym elementem dokumentacji niezbędnej dla studium uwarunkowań budowy nowej hydroelektrowni na środkowym odcinku Wisły. W pracy wykorzystano wysokorozdzielcze zobrazowania satelitarne RapidEye (5 kanałów spektralnych, w tym dwa w zakresie NIR) pokrywające obszar około 5.300 km2 oraz oprogramowanie eCognition (TRIMBLE Geospatial) a także warstwy informacyjne GIS. W wyniku przeprowadzonych analiz uzyskano mapę pokrycia terenu reprezentowaną przez 29 klas. Największą powierzchnię terenu badań zajmują obszary użytkowane rolniczo (59.5%, z czego 35.5% grunty orne) oraz lasy (29.1%, z czego 21.4% drzewostany iglaste), co świadczy o charakterze tej jednostki fizjograficznej. Analiza dokładności uzyskanych wyników wykazała, iż metoda OBIA daje bardzo dobre rezultaty (współczynnik Kappa równy 0.8) w daleko zautomatyzowanym procesie generowania aktualny map pokrycia terenu dla obszarów centralnej Polski na podstawie obrazów satelitarnych RapidEye.
Parallel with the development of remote sensing and high resolution satellite images major challenge for modern research has become almost to automate the classification of the data obtained. One of the most rapidly developing methods for automatic classification is object-oriented image analysis (OBIA, Object Based Image Analysis). The aim of the present study was to use the OBIA method to create the current land cover map which is part of the documentation necessary for new water power-station on the middle part of Vistula river. In this paper the RapidEye satellite images (5 spectral bands, two in the NIR range) covering an area of about 5 300 km2 and eCognition Developer (TRIMBLE) software were used. As a result of the analysis and land cover map was obtained, represented by 29 classes. The largest area is covered by agricultural land (59.5%; arable land – 35.52%) and forests (29.1%; mainly coniferous 21.4%), reflecting the rural – forestry character of the area. Analysis of the accuracy of the obtained results has shown that the OBIA method gives quite good results (Kappa coefficient equal to 0.8) for land cover mapping of central part of Poland based on the RapidEye imageries.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 489-500
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa zmian pokrycia terenu małopolski 1986-2011 wykonana w oparciu o klasyfikację obiektową obrazów satelitarnych Landsat oraz RapidEye
Map of land use / land cover changes in malopolska voivodeship in 1986-2010 created by object based image analysis of Landsat and RapidEye satellite images
Autorzy:
Wężyk, P.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szafrańska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130712.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
Landsat
RapidEye
użytkowanie terenu
pokrycie terenu
analiza przestrzenna
GIS
segmentacja
object-oriented classification
land use
land cover
spatial analysis
temporal analysis
segmenatation
Opis:
Changes in land use / land cover are the result of interaction between natural processes and human activity. Using GIS analysis to estimate the dynamic of these changes we can detect former trends and their simulation in the future. Diagnosed directions of changes can be used e.g. to create local plans of spatial management or region growth policy. Main goal of this study was to diagnose main trends of changes in land use / land cover in Malopolska voivodeship in last 25 years (1986-2010). Results were shown as statistics and map compositions. Project was created based on RapidEye and LANDSAT 5 TM satellite data and aerial imagery from 2009-2010. The best way to process huge amount and various data was to use Object Based Image Analysis (OBIA). As the results of classification we received 10 classes of land use for both terms of analyses (1986-1987 and 2009-2010). Identified classes were: bare soil, grass-covered areas, urban areas, rivers and watercourses, coniferous forest, leaf forest, peatbog, and other areas. Results show, that especially 2 classes arisen much: forest (4.39%) and urban areas (2.40%), mostly at the expanse of agricultural (-3.60%) and grass-covered areas (-1.18%). Based on results we can say, that changes detected in past 25 years in Malopolska region, which we can also notice today, agree with general trends of landscape changes, that we can observe in Poland for the last 3 decades. These general changes are: renewed succession of forest on areas where agricultural production discontinued; also intense development of road infrastructure. Object Based Image Analysis allowed to realize these study for area of more than 15 000 km2 for only a few weeks.
Zmiany pokrycia terenu i użytkowania ziemi są rezultatem wzajemnego oddziaływania na siebie złożonych procesów przyrodniczych oraz społeczno-ekonomicznych. Analizy przestrzenne GIS dynamiki tych zmian umożliwiają wykrycie występujących w przeszłości trendów i procesów oraz ich symulację dla nadchodzącego okresu. Zdiagnozowane kierunki przemian krajobrazu mogą zostać wykorzystane m.in. przy tworzeniu lokalnych planów zagospodarowania przestrzennego, czy generalnie kreowaniu polityki rozwoju regionów. Celem prezentowanego opracowania było zdiagnozowanie głównych trendów przemian pokrycia terenu województwa małopolskiego na przestrzeni ostatnich dwudziestu pięciu lat (19862011) oraz ich statystyczne i graficzne zaprezentowanie w postaci kompilacji map numerycznych. Projekt wykonano w oparciu o dane teledetekcyjne: zobrazowania satelitarne RapidEye i LANDSAT TM oraz lotnicze ortofotomapy (PZGiK) z lat 2009 - 2010. Duża ilość i różnorodność danych wymusiła zastosowanie obiektowego przetwarzania danych teledetekcyjnych, tj. klasyfikacji OBIA (ang. Object Based Image Analysis). W wyniku przeprowadzanej klasyfikacji otrzymano 10 klas pokrycia i użytkowania terenu dla dwóch terminów badawczych (1986-87 oraz 2010-11), tj.: grunty orne, użytki zielone, tereny zurbanizowane, rzeki i cieki, zbiorniki wodne, lasy iglaste, lasy liściaste, zadrzewienia i zakrzewienia, tereny różne oraz torfowiska. Wykazano, iż na obszarze Małopolski wystąpiło znaczne zwiększenie powierzchni lasów (wzrost o 4.4%) oraz terenów zurbanizowanych (wzrost o 2.4%), głównie kosztem powierzchni gruntów rolnych (ubytek o 3.6%) oraz trwałych użytków zielonych (ubytek o 1.2%). Otrzymane wyniki pozwoliły wysunąć wniosek, iż zmiany jakie zachodziły w przeciągu 25 lat oraz te, z którymi wciąż mamy do czynienia w województwie małopolskim, pokrywają się z ogólnymi kierunkami i trendami przemian krajobrazu obserwowanymi w Polsce w ostatnich trzech dekadach, tj. procesami sukcesji wtórnej zbiorowisk leśnych na gruntach, na których zaprzestano produkcji rolnej oraz związanych z inwestycjami infrastruktury drogowej i kolejowej. Zastosowanie automatycznej klasyfikacji obiektowej oraz analiz przestrzennych GIS pozwoliło na realizację opracowania dla obszaru ponad 15.000 km2 w ciągu zaledwie kilku tygodni.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 273-284
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies