Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "measures of noncompactness" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces
Autorzy:
Gomaa, Adel Mahmoud
Powiązania:
https://bibliotekanauki.pl/articles/745302.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Nonlinear differential equations
weak solutions
measures of noncompactness
delay
Opis:
In the present work we give an existence theorem for bounded weak solution of the differential equation \[ \dot{x}(t) = A(t)x(t) + f (t, x(t)),\quad t \geq 0 \] where \(\{A(t) : t \in I\mathbb{R}^+ \}\) is a family of linear operators from a Banach space \(E\) into itself, \(B_r = \{x \in E : \|x\| \leq r\}\) and \(f \colon \mathbb{R}^+ \times B_r \to E\) is weakly-weakly continuous. Furthermore, we give existence theorem for the differential equation with delay \[ \dot{x}(t) = \hat{A}(t) x(t) + f^d (t, θ_t x)\quad \text{if}\ t \in [0, T], \] where \(T, d \gt 0\), \(C_{B_r} ([-d, 0])\) is the Banach space of continuous functions from \([-d, 0]\) into \(B_r\), \(f_d\colon [0, T] \times C_{B_r} ([-d, 0]) \to E\) weakly-weakly continuous function, \(\hat{A}(t)\colon [0,T] \to L(E)\) is strongly measurable and Bochner integrable operator on \([0,T]\) and \(θ_t x(s) = x(t + s)\) for all \(s \in [-d, 0]\).
Źródło:
Commentationes Mathematicae; 2007, 47, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies