Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Anh, Nguyen Van" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A hybridization of machine learning and NSGA-II for multi-objective optimization of surface roughness and cutting force in AISI 4340 alloy steel turning
Autorzy:
Nguyen, Anh-Tu
Nguyen, Van-Hai
Le, Tien-Thinh
Nguyen, Nhu-Tung
Powiązania:
https://bibliotekanauki.pl/articles/2200263.pdf
Data publikacji:
2023
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
multi-objective optimisation
machine learning
AISI 4340
NSGA-II
ANN
Opis:
This work focuses on optimizing process parameters in turning AISI 4340 alloy steel. A hybridization of Machine Learning (ML) algorithms and a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is applied to find the Pareto solution. The objective functions are a simultaneous minimum of average surface roughness (Ra) and cutting force under the cutting parameter constraints of cutting speed, feed rate, depth of cut, and tool nose radius in a range of 50–375 m/min, 0.02–0.25 mm/rev, 0.1–1.5 mm, and 0.4–0.8 mm, respectively. The present study uses five ML models – namely SVR, CAT, RFR, GBR, and ANN – to predict Ra and cutting force. Results indicate that ANN offers the best predictive performance in respect of all accuracy metrics: root-mean-squared-error (RMSE), mean-absolute-error (MAE), and coefficient of determination (R2). In addition, a hybridization of NSGA-II and ANN is implemented to find the optimal solutions for machining parameters, which lie on the Pareto front. The results of this multi-objective optimization indicate that Ra lies in a range between 1.032 and 1.048 μm, and cutting force was found to range between 7.981 and 8.277 kgf for the five selected Pareto solutions. In the set of non-dominated keys, none of the individual solutions is superior to any of the others, so it is the manufacturer's decision which dataset to select. Results summarize the value range in the Pareto solutions generated by NSGA-II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius of 0.4 mm, are recommended. Following that, experimental validations were finally conducted to verify the optimization procedure.
Źródło:
Journal of Machine Engineering; 2023, 23, 1; 133--153
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design optimization of compliant mechanisms for vibration assisted machining applications using a hybrid Six Sigma, RSM-FEM, and NSGA-II approach
Autorzy:
Pham, Huy-Tuan
Nguyen, Van-Khien
Dang, Quang-Khoa
Duong, Thi Van Anh
Nguyen, Duc-Thong
Phan, Thanh-Vu
Powiązania:
https://bibliotekanauki.pl/articles/24084644.pdf
Data publikacji:
2023
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
compliant mechanism
multi-objective optimisation
Six Sigma
NSGA-II
Opis:
Vibration-assisted machining, a hybrid processing method, has been gaining considerable interest recently due to its advantages, such as increasing material removal rate, enhancing surface quality, reducing cutting forces and tool wear, improving tool life, or minimizing burr formation. Special equipment must be designed to integrate the additional vibration energy into the traditional system to exploit those spectacular characteristics. This paper proposes the design of a new 2-DOF high-precision compliant positioning mechanism using an optimization process combining the response surface method, finite element method, and Six Sigma analysis into a multi-objective genetic algorithm. The TOPSIS method is also used to select the best solution from the Pareto solution set. The optimum design was fabricated to assess its performance in a vibration-assisted milling experiment concerning surface roughness criteria. The results demonstrate significant enhancement in both the manufacturing criteria of surface quality and the design approach criteria since it eliminates modelling errors associated with analytical approaches during the synthesis and analysis of compliant mechanisms.
Źródło:
Journal of Machine Engineering; 2023, 23, 2; 135--158
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies