Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "działanie rakotwórcze" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Kadm i jego związki nieorganiczne – w przeliczniu na Cd
Autorzy:
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/137577.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kadm
nerki
działanie rakotwórcze
NDS
DSB
cadmium
kidney
carcinogrnicity
MAC
BEI
Opis:
Kadm (Cd) jest białym metalem o niebieskawym odcieniu. Tworzy szereg związków, występując w nich wyłączne w 2+ stopniu utlenienia. Związki kadmu są w rożnym stopniu rozpuszczalne w wodzie – od dobrze rozpuszczalnych (np.: octan, chlorek, siarczan) do praktycznie nierozpuszczalnych (np.: tlenek, siarczek). Kadm jest stosowany obecnie głownie do produkcji elektrod w akumulatorach w postaci CdO (79%) oraz jako pigment w wyrobach ceramicznych, tworzywach sztucznych i szkle, głownie w postaci siarczanu i selenku (11%), a także wchodzi w skład powłok antykorozyjnych (7%), stabilizatorów polimerów (2%) i stopów (1%). Do grup największego ryzyka zalicza się pracowników zatrudnionych przy: produkcji akumulatorów niklowo-kadmowych, stopów, pigmentów kadmowych i barwieniu tworzyw sztucznych pigmentami, a także pracowników hut metali nieżelaznych oraz spawaczy tnących metale powleczone antykorozyjną warstwą kadmu. W 2007 r. według danych Głównej Inspekcji Sanitarnej 52 osoby były zatrudnione na stanowiskach pracy, gdzie stężenia kadmu przekraczały wartość najwyższego dopuszczalnego stężenia (NDS) wynoszącą 0,01 mg/m3. Kadm ulega wchłanianiu z płuc i z przewodu pokarmowego. U ludzi wydajność wchłaniania z przewodu pokarmowego wynosi około 4 ÷ 6%. Prawie 5 ÷ 20% wdychanego kadmu ulega deponowaniu w płucach. Kadm ulega kumulacji w wątrobie i w nerkach (około 40 ÷ 80 puli ustrojowej) w formie związanej z metalotioneiną. Stężenie kadmu w korze nerkowej jest większe niż w części rdzennej. Eliminacja kadmu z ustroju jest procesem powolnym. Biologiczne okresy półtrwania kadmu we krwi wynosiły po zakończeniu narażenia zawodowego 75 ÷ 130 dni dla pierwszej fazy i około 16 lat dla drugiej fazy. Za narządy krytyczne toksycznego działania kadmu i jego związków nieorganicznych na ludzi uznano nerki i płuca, na podstawie wyników badań populacji narażonych. Skutkiem krytycznym działania kadmu na nerki jest wzmożone wydalanie w moczu białek niskocząsteczkowych, natomiast w przypadku działania na płuca – działanie rakotwórcze. Prawdopodobieństwo wystąpienia objawów zaburzeń czynności nerek u ludzi jest zależne od wielkości stężenia kadmu w korze nerki. To ostatnie stwierdzenie odnosi się jedynie do nerki zdrowej, w której ma miejsce proces kumulacji kadmu. Można przyjąć, że stężenie krytyczne kadmu w korze nerkowej wynosi około 200 mg/kg kory nerkowej. Wartość ta została obecnie powszechnie zaakceptowana w odniesieniu do populacji narażonej w środowisku pracy. Wyniki badań przeprowadzonych u osób narażonych na kadm w środowisku pracy wykazały, że stężenie progowe kadmu w moczu, przy którym stwierdzano wzmożone wydalanie w moczu takich białek niskocząsteczkowych, jak β2-M czy białko wiążące retionol (RBP) wynosiło 5 ÷ 10 μg/g kreatyniny. Stwierdzono, że występowanie skutków związanych ze stężeniem kadmu w moczu 10 μg/g kreatyniny może prowadzić do szybszego, niż związanego z wiekiem, osłabienia czynności nerek w postaci zmniejszenia szybkości przesączania kłębuszkowego. W przeszłości przeważał pogląd, że wzmożone wydalanie białek niskocząsteczkowych z moczem jest objawem nieodwracalnym, występującym także po przerwaniu narażenia. W wyniku badań pracowników przewlekle narażonych na kadm stwierdzono, że gdy mikroproteinuria była umiarkowana (β2-M w moczu > 300 i < 1500 μg/g kreatyniny), a wartości stężeń kadmu w moczu (Cd-U) nie przekraczały w przeszłości 20 μg/g kreatyniny, to objaw ten był odwracalny po przerwaniu pracy w narażeniu. Międzynarodowa Agencja Badań nad Rakiem (IARC) uznała w 1993 r. kadm za czynnik rakotwórczy dla ludzi (grupa 1). Wniosek ten został oparty głownie na zależności między skumulowanym narażeniem na kadm i częstością występowania nowotworów płuc w kohorcie pracowników zatrudnionych w zakładzie odzyskiwania kadmu w Stanach Zjednoczonych. Wyniki tych badań były krytykowane, głownie ze względu na nieuwzględnienie wpływu jednoczesnego narażenia na arsen. W związku z tym uważa się, że dowody działania rakotwórczego kadmu u ludzi są słabe, a więc kadm powinien być raczej zaliczany do grupy czynników prawdopodobnie rakotwórczych dla człowieka. Wniosek taki jest zgodny z klasyfikacją działania rakotwórczego kadmu w: Unii Europejskiej (grupa 2.), Amerykańskiej Agencji Ochrony Środowiska (US EPA, grupa B1) oraz Amerykańskiej Konferencji Rządowych Higienistów Przemysłowych (ACGIH, grupa A2). Według US EPA ryzyko jednostkowe wynosi 0,0016. Proponowana wartość najwyższego dopuszczalnego stężenia (NDS) dla kadmu i jego związków nieorganicznych wynosi 0,01 mg Cd/m3 dla pyłów i dymów oraz 0,002 mg/m3 dla frakcji respirabilnej. W propozycji tej uwzględniono skutki działania kadmu na czynność nerek oraz możliwe jego działanie rakotwórcze. Wyniki badań populacji narażonych zawodowo na kadm pozwalają stwierdzić, że objawy wzmożonego wydalania białek niskocząsteczkowych, na skutek kumulacji kadmu w korze nerkowej i zaburzeń resorpcji zwrotnej w kanalikach nerkowych, występują już w przypadku skumulowanego narażenia rzędu 400 ÷ 500 μg/m3 razy lata pracy. Nie są to jeszcze objawy szkodliwe, jednak w przypadku kontynuowania nadmiernego narażenia mogą przyjąć charakter nieodwracalny i prowadzić do zmniejszenia szybkości filtracji kłębuszkowej. Utrzymywanie stężeń kadmu w powietrzu poniżej proponowanych wartości NDS powinno zabezpieczyć pracowników przed osiągnięciem krytycznego stężenia kadmu w korze nerek w ciągu 40 lat pracy. Przyjmując wartość ryzyka jednostkowego na poziomie 1,8 ・ 10-3 i 40 lat pracy, obliczamy całożyciowe ryzyko wystąpienia dodatkowych nowotworów płuc w wyniku narażenia na kadm o stężeniu 10 μg/m3 , które wynosi 2,25 ・ 10-3. Ryzyko to jest o prawdopodobnie zawyżone, gdyż podstawą wartości ryzyka jednostkowego były dane, w których nie uwzględniono dodatkowego wpływu arsenu. Proponuje się ponadto ustalenie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) kadmu i jego związków nieorganicznych wynoszące 5 μg Cd/l krwi i 5 μg Cd/g kreatyniny w moczu. Wykonywanie oznaczeń kadmu w moczu pozwoli na: ocenę narażenia w przeszłości, zapobieganie nadmiernej kumulacji tego pierwiastka w nerkach i zapobieganie wystąpieniu szkodliwych skutków jego działania. Stężenie kadmu we krwi stanowi marker aktualnego narażenia. Celowe jest uzupełnianie podanej wartości DSB (Cd-B i Cd-U) pomiarem markerów wczesnych skutków działania kadmu. Szczególnie istotny jest pomiar stężenia s2-mikroglobiliny i białka wiążącego retinol (RBP) w moczu.
Cadmium is a silver-white metal, oxidation state +2. Of the many inorganic cadmium compounds, several are quite soluble in water (e.g. cadmium acetate, chloride, and sulfate); cadmium oxide and cadmium sulfide are almost insoluble. The use of cadmium compounds falls into five categories: active electrode materials in nickel-cadmium batteries (79%); pigments used mainly in plastics, ceramics, and glasses (11%); coatings on steel and some nonferrous metals (7%); stabilizers for polymers (2%), and component of various specialized alloys (1%). Most exposure to cadmium compounds in the working environment occurs through inhalation among people manufacturing nickel- cadmium batteries or pigments. High acute inhalation exposure may occur among workers welding cadmium-plated materials or using silver-cadmium solder. In 2007, according to the State Sanitary Inspection, 52 persons were employed in Poland at cadmium concentrations in the air exceeding the occupational exposure limit of 0.01 mg/m3. Cadmium is absorbed from the lungs and the gastrointestinal tract. In humans, on average, 4-6% of the total oral intake is absorbed. Between 5 and 20% of inhaled cadmium is deposited in the lungs. Cadmium is mainly stored in the liver and kidneys (about 40 – 80 % of the body burden) bound to metallothionein. Elimination is normally slow. Biological half-times after cessation of occupational exposure were 75-130 days during the first phase and to about 16 years during the second phase of elimination. Long-term occupational exposure to cadmium causes severe chronic effects, predominantly in the lungs and kidneys. The kidney is the critical organ. The accumulation of cadmium in the renal cortex leads to renal tubular dysfunction with impaired reabsorption of proteins, glucose, and amino acids. An increase of low molecular weight proteins in urine is a characteristic sign of tubular dysfunction. There is evidence that long-term occupational exposure to cadmium may contribute to the development of cancer of the lung. Impaired tubular reabsorption of low-molecular weight proteins or increased glomerular permeability occurred mainly when cadmium levels in urine exceeded 10 –15 μg/g creatinine corresponding to the renal cortex concentration of about 200 mg/kg. For a long time tubular proteinuria was considered irreversible. Experimental and fields data suggested, however, that the persistence of this kind of proteinuria depended on the intensity of cadmium exposure as well as the severity of cadmium-induced renal tubular changes. In a study on workers chronically exposed to cadmium when the microproteinuria was mild ( β2-M-U > 300 and < 1500 μg/g creatinine) and historical Cd-U values never exceeded 20 μg/g creatinine, there was an indication of a reversible tubulotoxic effect of cadmium. According to IARC there was sufficient evidence to classify cadmium and cadmium compounds as human carcinogens ( group I). This assessment to a great extent depended on the significant relation between the risk of lung cancer and estimated cumulative exposure to cadmium in an analysis of mortality among a cohort of workers from a single cadmium recovery plant in the USA. These findings were criticized mainly because there was no control for exposure to arsenic. The results of a later reevaluation suggest that the evidence for cadmium as a human carcinogen is rather weak, and thus classifying cadmium as probably carcinogenic to humans would be more appropriate. This conclusion complies with the EC ( carcinogenic category 2), US EPA ( category B1) and ACGIH ( category A2) classifications. According to US EPA the unit risk is 0.0016. On the basis of the results of epidemiological examinations the MAC values for cadmium and its inorganic compounds were established at 0.01 mg/m3 and 0.002 mg/m3 for inhalable and respirable fractions, respectively. Dose-response analyses showed increased incidence of tubular proteinuria when the cumulative cadmium exposure index was greater than 400-500 μg/m3 x years corresponding to 40 – 50 years of exposure to 0.010 mg/m3. The calculated risk of additional lung cancer as a result of 20-year exposure to 0.010 mg/m3 is to 2.25 x 10-3. The proposed admissible levels of in urine ( Cd-U) and in blood (Cd-B) are 5 μg/g creatinine and 5 μg/l, respectively. The level of Cd-B can be considered an indicator of current exposure, whereas Cd-U, in absence of renal damage , reflects the cadmium body burden. Measurements of β2-microglobulin or retinol binding protein in urine can be used to assess the effects of cadmium on renal function.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 2 (72); 111-146
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Formaldehyd
Formaldehyde
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/138019.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
formaldehyd
narażenie zawodowe
działanie rakotwórcze
NDS
formaldehyde
occupational exposure
carcinogenicity
MAC
Opis:
Formaldehyd jest bezbarwnym gazem o specyficznym, ostrym, drażniącym zapachu. Około 50% całkowitej produkcji formaldehydu stanowi produkcja żywic formaldehydowych. Związek jest stosowany także w produkcji: klejów, barwników, farb i lakierów. Narażenie na formaldehyd występuje również w przemyśle włókienniczym, gdzie używa się go jako składnika kąpieli apreterskich. Bywa stosowany ponadto w: przemyśle papierniczym, fotograficznym, garbarskim, gumowym, rafineryjnym, odlewniczym i budownictwie. W medycynie i biologii formaldehyd jest stosowany w postaci formaliny lub para formaldehydu w celach dezynfekcyjnych oraz jako środek konserwujący i utrwalający preparaty medyczne i biologiczne. Według informacji uzyskanych przez Instytut Medycyny Pracy w Łodzi z wojewódzkich stacji sanitarno-epidemiologicznych w 2000 r. liczba osób zawodowo narażonych na formaldehyd o stężeniach powyżej obowiązującej wartości NDS (0,5 mg/m3) wynosiła ogółem 2196. Można przypuszczać, że w rzeczywistości liczba osób narażonych zawodowo na formaldehyd jest znacznie większa. W obrazie inhalacyjnego zatrucia formaldehydem u ludzi dominują objawy działania drażniącego na spojówki oczu i błony śluzowe dróg oddechowych, a także zaburzenia czynności płuc i nadreaktywność oskrzeli. Wyniki obserwacji w kierunku występowania objawów działania drażniącego w zależności od stężenia formaldehydu w powietrzu i długości czasu narażenia pochodzą przede wszystkim z badań na ochotnikach. Podrażnienie oczu jest najbardziej czułym parametrem w przypadku narażenia na formaldehyd. Wartości stężeń od 0,369 mg/m3 (0,3 ppm) z pikami do 0,74 mg/m3 (0,6 ppm) oraz od 0,615 mg/m3 (0,5 ppm) z pikami do 1,23 mg/m3 (1 ppm) przyjęto odpowiednio za subiektywną i obiektywną wartość NOAEL. Wyznaczono, na podstawie oszacowań przeprowadzonych przez grupy eksperckie, wartość NOAEL dla miejscowego działania drażniącego formaldehydu na poziomie 0,37 mg/m3 (0,3 ppm). Na podstawie wyników badań na zwierzętach narażanych inhalacyjnie na działanie formaldehydu u szczurów stwierdzono raki płaskonabłonkowe nosa. Ze względu na uzyskanie tych wyników badań na zwierzętach obserwacje u ludzi dotyczyły prześledzenia związku między występowaniem raka nosa i gardła oraz raka zatokowonosowego a narażeniem na formaldehyd. Kontrowersje istniały również wokół potencjalnego związku między zwiększoną zapadalnością na nowotwory płuc i białaczki a zawodowym narażeniem na formaldehyd w przemyśle. Grupa Robocza IARC uwzględniła w 2006 r. w procesie klasyfikacji pod kątem działania rakotwórczego formaldehydu – statystycznie znamienny wzrost występowania zgonów z powodu raków nosogardła w kohorcie składającej się z osób narażonych na formaldehyd w warunkach przemysłowych (praca podczas produkcji i/lub stosowania formaldehydu) i w grupie osób balsamujących zwłoki, chociaż w innych badaniach kohortowych raportowano mniej przypadków występowania raków nosogardła niż to było oczekiwane. W IARC uznano, że istnieją wystarczające epidemiologiczne dowody na to, że formaldehyd wywołuje raka nosogardła u ludzi, natomiast istniejące dowody są niewystarczające, aby uznać, że formaldehyd może powodować raka zatokowonosowego i białaczki u osób narażonych w przemyśle. Dane pochodzące z badań na zwierzętach stały się podstawą ilościowej oceny ryzyka wystąpienia dodatkowego nowotworu u ludzi. Mimo ciągle wielu niewiadomych wyliczenia te wskazują na niewielkie ryzyko pojawienia się nowotworów po narażeniu na formaldehyd o stężeniu poniżej 1 mg/m3. Według najnowszych szacowań ryzyko wystąpienia dodatkowych przypadków nowotworu nosa u ludzi narażonych na formaldehyd o stężeniu 0,37 mg/m3 (0,3 ppm) przez 40 lat wynosi 10-7 ÷ 10-8. Za skutek krytyczny ustalenia wartości NDS formaldehydu przyjęto działanie drażniące związku na błony śluzowe oczu i nosa. Do wyliczenia wartości NDS przyjęto wartość NOAEL (tzw. „obiektywną”) równą 0,615 mg/m3 (0,5 ppm) i wyznaczoną w badaniu na ochotnikach przeprowadzonym w 2007 r., w którym narażano 21 ochotników 10 razy, w ciągu kolejnych 10 dni, przez 4 h na formaldehyd o stężeniach: 0,18; 0,37 i 0,62 mg/m3 (0,15; 03 i 0,5 ppm). Octan etylu o stężeniach 43,2 ÷ 57,6 mg/3 (12 ÷ 16 ppm) był używany podczas 4 z 10 sesji jako czynnik maskujący zapach formaldehydu. Proponuje się przyjęcie stężenia 0,24 mg/m3 formaldehydu za wartość NDS, tj. zgodnie z wartością dopuszczalnego poziomu narażenia zawodowego zaproponowaną przez SCOEL (projekt trzeciego wykazu indykatywnych dopuszczalnych wartości narażenia zawodowego), a także przyjęcie stężenia 0,48 mg/m3 związku za wartość NDSCh ze względu na działanie drażniące formaldehydu oraz oznakowanie normatywu literami: „A” – substancja o działaniu uczulającym, „C” – substancja o działaniu żrącym oraz „Sk” – substancja wchłania się przez skórę.
Formaldehyde is a colourless gas with a pungent odour. Its widest use is in the production of resins with urea, phenol and melamine and, to a small extent, their derivatives. It is also used in the production of adhesives and binders for the wood, plastics, textiles, leather and related industries. Formaldehyde is used extensively as an intermediate in the manufacturing of industrial chemicals. Formaldehyde causes local irritation, acute and chronic toxicity and has genotoxic and cytotoxic properties. Vapors are highly irritating to the eye and the respiratory tract. Acute effects include nausea, headaches, and difficult breathing. Formaldehyde can also induce or exacerbate asthma. Chronic exposure is associated with respiratory symptoms and eye, nose and throat irritation. Repeated exposure of skin to the liquid causes irritation and allergic dermatitis. The most reliable data are obtained in controlled studies with volunteers. Twenty-one volunteers were examined over a 10-week period. Measurements were related to conjunctival redness, blinking frequency, nasal flow and resistance, pulmonary function and reaction times. Subjective assessments included discomfort; the influence of personality factors on subjective scoring was also evaluated. The authors concluded that eye irritation was the most sensitive parameter recorded, and that the no-observed-adverseeffect levels for subjective and objective eye irritation were 0.37 mg/m3 and 0.615 mg/m3 (0.3 and 0.5 ppm) respectively. International Agency for Research on Cancer classified formaldehyde as carcinogenic to human to group 1. Three types of cancers were assessed: nasopharyngeal cancer, leukaemia and sinonasal cancer. There was sufficient evidence that formaldehyde causes nasopharyngeal cancer, strong but not sufficient evidence of leukaemia and limited evidence of sinonasal cancer. On the basis of the latest data the risk of nose cancer was assessed as 10-7 ÷ 10-8 for formaldehyde concentration of 0.37 mg/m3/40 years. Maximum admissible concentration value of formaldehyde in the working environment in Poland has been established as 0.24 mg/m3 as a time weighed value and 0.48 mg/m3 as short-term based on the irritation effect. The verification of the MAC value of formaldehyde in the working environment is supposed to be adapted to European standards. Vacatio legis was established until 20 March 2008.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 3 (57); 51-125
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Toliloamina
2-Tolyloamine
Autorzy:
Szymańska, J. A
Frydrych, B
Powiązania:
https://bibliotekanauki.pl/articles/138281.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-toliloamina
narażenie zawodowe
działanie rakotwórcze
NDS
DSB
2-tolyloamine
occupational exposure
carcinogenicity
OEL
BEI
Opis:
2-Toliloamina (o-toluidyna, CAS: 95-53-4) jest bezbarwną lub bladożółtą oleistą cieczą przypo-minającą zapachem anilinę i otrzymywaną przez redukcję nitrotoluenu. 2-Toliloaminę stosuje się m.in. do wytwarzania barwników, chemikaliów, farmaceutyków i pestycydów. Narażenie zawodowe może być związane z jej produkcją i wykorzystaniem. Skutkiem ostrego zatrucia 2-toliloaminą są: methemoglobinemia, hematuria, podrażnienie nerek i pęcherza moczowego oraz zatrzymanie moczu. Według danych z piśmiennictwa 30-minu-towe narażenie na 2-toliloaminę o stężeniu 176 mg/m3 jest przyczyną wystąpienia objawów ostrego zatrucia, natomiast narażenie na 2-toliloaminę o stężeniu 44 mg/m3 było przyczyną wystąpienia objawów zatrucia określanych jako łagodne. Zatruciom przewlekłym towarzyszy: wzrost stężenia methemoglobiny we krwi, hematuria oraz zmiany w pęcherzu moczowym prowadzące do powstania raka tego narządu. W dostępnym piśmiennictwie nie znaleziono informacji na temat badań epidemiologicznych, w których zawodowe narażenie dotyczyłoby wyłącznie 2-toliloaminy. Toksyczność ostra 2-toliloaminy dla zwierząt jest mała. Wartość DL50 tej substancji mieści się w granicach 150 ÷ 840 mg/kg masy ciała. Jednorazowe narażenie zwierząt na 2-toliloaminę w dużych dawkach powoduje: wzrost poziomu methemoglobiny, sinicę, anemię i zmiany w śledzionie. Wielokrotne narażenie szczurów na 2-toliloaminę podawaną drogą dożołądkową po-wodowało: zahamowanie przyrostu masy ciała zwierząt, zmiany w błonie śluzowej pęcherza moczowego (proliferacja, wakuolizacja, mataplazja), tworzenie depozytów barwnika w śle-dzionie, wątrobie i nerkach oraz zwiększoną liczbę padłych zwierząt. Objawom tym towarzy-szyły: methemoglobinemia, sinica, erytropenia i retikulocytoza. Na podstawie wyników badań mutagenności 2-toliloaminy z użyciem testów bakteryjnych wykazano, że związek ten wykazuje działanie mutagenne jedynie w obecności frakcji S9. Wyniki badań nad genotoksycznością dowodzą, że 2-toliloamina jest związkiem genotoksycznym powodującym m.in. mutacje genowe, aberracje chromosomowe, wymianę chromatyd siostrzanych i pękanie nici DNA. 2-Toliloamina indukuje powstawanie takich nowotworów u zwierząt, jak: naczyniaki, mięsaki, włókniakomięsaki, włókniakogruczolaki i brodawczaki różnych narządów. Na podstawie wy-ników badań nad rakotwórczym działaniem 2-toliloaminy związek ten został zaklasyfikowany w Unii Europejskiej do kategorii 2. W Polsce 2-toliloamina jest zaliczana do 2. kategorii rako-twórczości. 2-Toliloamina wchłania się przez skórę i płuca. Metabolizowana jest na drodze hydroksylacji i N-acetylacji. Powstałe metabolity (głównie 4-amino-m-krezol i N-acetylo-amino-m-krezol) ule-gają sprzęganiu z kwasem siarkowym oraz glukuronowym i w tej postaci są wydalane z moczem. Mechanizm działania toksycznego 2-toliloaminy jest związany z zahamowaniem aktywności monooksygenaz i zaburzeniem procesu detoksykacji. Powstałe w wyniku metabolizmu hy-droksylowe pochodne wykazują działanie methemoglobinotwórcze. Narażenie zawodowe na 2-toliloaminę w połączeniu z innymi aminami aromatycznymi powo-duje raka pęcherza moczowego. Zaproponowano przyjęcie stężenia 3 mg/m3 2-toliloaminy za wartość najwyższego dopuszczalnego stężenia (NDS) związku. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia (NDSCh) 2-toliloaminy. Za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) przyjęto poziom methemoglobiny (MetHb) wynoszący 2%. Proponuje się oznakowanie związku literami: „Sk”, „I” oraz Rakotw. Kat. 2.
2-Tolyloamine (o-toluidine) is a light yellow liquid, slightly soluble in water and soluble in al-cohol and ether. o-Toluidine and its hydrochloride have been mostly used as intermediates in manufacturing a variety of dyes, rubber chemicals, pharmaceuticals and pesticides. o-Toluidine is been absorbed via the respiratory tract and skin. The body rapidly metaboliz-es o-toluidine and the metabolites are excreted largely in the urine. Oral LD50 in animals is 150-840 mg/kg bw. In animal studies, short-term administration of o-toluidine results in cyano-sis, reticulocytosis, anaemia, methaemoglobinaemia, bladder haemorrhage and vacuolization and proliferation of bladder epithelial cells. Chronic exposure results in incidences of vascular tumors (hemangiosarcomas and hemangiomas of the abdominal viscera and urinary bladder). o-Toluidine (hydrochloride) is carcinogenic in mice and rats after oral administration, produc-ing a variety of malignant tumors. o-Toluidine and its hydrochloride produces increased num-bers of chromosomal aberrations, sister-chromatid exchanges and unscheduled DNA. Human exposure to chemicals including o-toluidine in the dyestuffs industry and more recently in the rubber industry has been reported to be associated with an increased incidence of bladder cancer. The European Union has classified o-toluidine as category 2, i.e., a substance considered as car-cinogenic to humans. This classification is obligatory in Poland, too. The Expert Group has recommended an OEL-TWA of 3 mg/m3 and a biological exposure index (BEI) of 2% methaemoglobinaemia.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 2 (60); 149-173
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oksym butan-2-onu jako potencjalny czynnik rakotwórczy dla ludzi – dowody i skutki dla przedsiębiorstw wynikające ze zmiany klasyfikacji
Butane-2-one oxime as a potential carcinogen for humans – evidence and effects on businesses resulting from reclassification
Autorzy:
Kupczewska-Dobecka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2153868.pdf
Data publikacji:
2022
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
NDS
oksym butan-2-onu
MEKO
działanie rakotwórcze
ograniczenie stosowania
occupational exposure
OEL
butan-2-one oxime
carcinogenic effects
restriction of using
Opis:
Przedstawiono i oceniono dowody zmiany kategorii rakotwórczości oksymu butan-2-onu (MEKO) oraz skutków wynikających z tej zmiany dla przedsiębiorstw produkujących lub stosujących ten związek. Przeprowadzono przegląd internetowych baz danych czasopism naukowych z uwzględnieniem dostępnych na stronie ECHA raportów dotyczących harmonizacji klasyfikacji i oznakowania MEKO na poziomie Unii Europejskiej. Rozporządzeniem Komisji (UE) 2020/1182 wprowadzono zharmonizowaną klasyfikację i oznakowanie MEKO pod względem działania rakotwórczego do kategorii 1B. Indukcja nowotworów, ich charakter i znaczenie dla ludzi oraz wrażliwość osobników obu płci 2 badanych gatunków – wszystkie te czynniki wspierają klasyfikację MEKO do kategorii rakotwórczości 1B. Z drugiej strony uzyskano ujemne wyniki badań genotoksyczności MEKO, w tym na komórkach ssaków i in vivo na zwierzętach. Jest to argument, że klasyfikacja MEKO do kategorii 2 rakotwórczości pozostaje właściwa. Ze zmiany kategorii rakotwórczości MEKO wynikają skutki prawne dla przedsiębiorstw, w tym dotrzymanie warunków ograniczenia REACH, które obejmuje restrykcjami wprowadzanie MEKO do powszechnej sprzedaży, prowadzenie rejestru prac, których wykonywanie powoduje konieczność pozostawania w kontakcie z MEKO lub jego mieszaninami zawierającymi go w stężeniu ≥0,1%. Zgodnie z opinią dostawców obecnie nie ma praktycznego i tak dobrze zbadanego zamiennika MEKO mimo prób znalezienia go w ostatnich latach. Ryzyko dodatkowego raka wątroby w przypadku 40-letniego narażenia zawodowego na MEKO wynosi 4:100 000 w stężeniu ok. 0,7 mg/m3 i jest to ryzyko akceptowalne zgodnie z przyjętymi w Polsce ustaleniami. Dotrzymywanie dopuszczalnych stężeń MEKO w powietrzu środowiska pracy na tym poziomie powinno zabezpieczyć pracowników przed jego działaniem rakotwórczym.
Evidence of a change in the carcinogenicity category of butan-2-one oxime (MEKO) and the results of this change for manufacturing and using companies was presented and assessed. The online databases of scientific journals were reviewed, taking into account the reports on the harmonization of MEKO classification and labeling at EU level available on the ECHA website. Commission Regulation (EU) 2020/1182 introduced harmonized classification and labeling of MEKO for carcinogenicity to category 1B. The induction of tumors, the nature and importance of tumors for humans, and the sensitivity of the 2 species tested, both sexes – all of these factors support the classification of MEKO into the carcinogenicity category 1B. On the other hand, MEKO is negative in genotoxicity studies, including in mammalian cells and in vivo in animals. This is the argument that the classification of MEKO as carcinogen category 2 remains appropriate. The change in the MEKO carcinogenicity category results in legal consequences for companies, such as compliance with the conditions of REACH restriction, which includes restrictions on placing MEKO on the market for sale to the general public, keeping a register of works that require contact with MEKO or its mixtures containing MEKO in a concentration ≥0.1%. According to the opinion of MEKO suppliers, there is currently no practical MEKO substitute that has been so well researched, despite attempts to find it in recent years. The risk of additional liver cancer in the case of 40-year occupational exposure to MEKO is 4:100 000 at a concentration of approx. 0.7 mg/m3, and it is an acceptable risk in accordance with the arrangements adopted in Poland. Compliance with the permissible concentrations of MEKO in the air of the working environment at this level should protect employees against the carcinogenic effect of MEKO.
Źródło:
Medycyna Pracy; 2022, 73, 6; 457-470
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies