Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "output signals" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Problems of forecasting the length of the assembly cycle of complex products realized in the MTO (make-to-order) model
Problematyka prognozowania długości cyklu montażu wyrobów złożonych realizowanych w modelu MTO (make-to-order)
Autorzy:
Brzozowska, Jolanta
Gola, Arkadiusz
Kulisz, Monika
Powiązania:
https://bibliotekanauki.pl/articles/31232972.pdf
Data publikacji:
2023
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
assembly cycle
machine assembly
forecasting
Make-to-Order
artificial neural networks
input signal
output signals
MatLab
cykl montażu
montaż maszyn
prognozowanie
produkcja na zamówienie
sztuczne sieci neuronowe
sygnały wejściowe
sygnał wyjściowy
Opis:
This article presents the problem of forecasting the length of machine assembly cycles in make-to-order production (Make-to-Order). The model of Make-to-Order production and the technological process of manufacturing the finished product are presented. The possibility of developing a novel method, using artificial intelligence solutions, to estimate machine assembly times based on historical company data on manufacturing times for structurally similar components, is described. It is assumed that the result of the developed method will be an intelligent system supporting efficient and accurate estimation of machine assembly time, ready for implementation in production conditions. Such data as part availability, human resource availability and novelty factor will be used as input data for learning the neural network, while the output variable during learning the neural network will be the actual machine assembly time.
W niniejszym artykule przedstawiono problem prognozowania długości cyklu montażu maszyn w produkcji na zamówienie (Make-to-Order). Przedstawiony został model produkcji na zamówienie oraz proces technologiczny wytwarzania wyrobu gotowego. Opisana została możliwość opracowania nowatorskiej metody, wykorzystującej rozwiązania z zakresu sztucznej inteligencji, umożliwiającej szacowanie czasu montażu maszyn w oparciu o dane historyczne przedsiębiorstw, dotyczące czasów wytwarzania podobnych konstrukcyjnie elementów. Zakłada się, iż rezultatem opracowanej metody będzie inteligentny system wspomagający skuteczne i dokładne szacowanie czasu montażu maszyn, gotowy do implementacji w warunkach produkcyjnych. Jako dane wejściowe do uczenia sieci neuronowej wykorzystane zostaną takie dane jak: dostępność części, dostępność zasobów ludzkich oraz czynnik nowości, zaś zmienną wyjściową podczas uczenia sieci neuronowej będzie rzeczywisty czas montażu maszyny.
Źródło:
Technologia i Automatyzacja Montażu; 2023, 3; 13-20
2450-8217
Pojawia się w:
Technologia i Automatyzacja Montażu
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies