Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Markov chain Monte Carlo methods" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On some method for diagnosing convergence in MCMC setups via atoms and renewal sets
Autorzy:
Romaniuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/970928.pdf
Data publikacji:
2007
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
convergence diagnosis
Markov chain Monte Carlo methods
Markov property
atom
renewal set
renewal theory
automated diagnosis of simulations
Opis:
MCMC setups are among the best known methods for conducting computer simulations necessary in statistics, physics, biology, etc. However, to obtain appropriate solutions, additional convergence diagnosis must be applied for trajectory generated by Markov Chain. In the paper we present, the method for dealing with this problem, based on features of so called "secondary" chain (the chain with specially selected state space). The secondary chain is created from the initial chain by picking only some observations connected with atoms or renewal sets. The discussed method has some appealing properties, like high degree of diagnosis automation. Apart from theoretical lemmas, the example of application is also provided.
Źródło:
Control and Cybernetics; 2007, 36, 4; 985-1008
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convergence diagnosis to stationary distribution in MCMC methods via atoms and renewal sets
Autorzy:
Romaniuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/971005.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
convergence diagnosis
Markov chain Monte Carlo methods
Markov property
atom
renewal set
renewal theory
automated diagnosis of simulations
Opis:
MCMC setups are one of the best known methods for conducting computer simulations useful in such areas as statistics, physics, biology, etc. However, to obtain appropriate solutions, the additional convergence diagnosis must be applied for Markov Chain trajectory generated by the algorithm. We present the method for dealing with this problem based on features of so called "secondary" chain (the chain with specially selected state space). The secondary chain is created from the initial chain by picking only some observations connected with atoms or renewal sets. In this paper we focus on finding the moment when the simulated chain is close enough to the stationary distribution of the Markov chain. The discussed method has some appealing properties, like high degree of diagnosis automation. Apart from theoretical lemmas and a more heuristic approach, the examples of application are also provided.
Źródło:
Control and Cybernetics; 2008, 37, 1; 205-229
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies