Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ahmad, F." wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Air Quality Assessment and Forecasting Using Neural Network Model
Autorzy:
Hamdan, Mohammad A.
Ata, Mohammad F. Bani
Sakhrieh, Ahmad H.
Powiązania:
https://bibliotekanauki.pl/articles/1838288.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
air pollutant
ANN
MATLAB
forecasting
Opis:
Air pollution is a major obstacle faced by all countries which impacts the environment, public health, socioeconomics, and agriculture. In this study, the air pollutants in the city of Amman were presented and analyzed. Nonlinear Autoregressive Exogenous (NARX) model was used to forecast the daily average levels of pollutants in Amman, Jordan. The model was built using the MATLAB software. The model utilized a Marquardt-Levenberg learning algorithm. Its performance was presented using different indices, R2 (Coefficient of Determination), R (Coefficient of Correlation), NMSE (Normalized Mean Square Error), and Plots representing network predictions vs original data. Historical measurements of air pollutants were obtained from 4 of the Ministry of Environment (MoEnv) air quality monitoring stations in Amman. The meteorological data representing three years (2015, 2016, and 2017) were used as predictors to train the Artificial Neural Network (ANN) while the data of the year 2018 were used to test it. The results showed good performance when forecasting SO2, O3, CO, and NO2, and acceptable performance when forecasting Particulate Matter (PM10) at the given 4 locations.
Źródło:
Journal of Ecological Engineering; 2021, 22, 6; 1-11
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Air Quality Assessment and Forecasting Using Neural Network Model
Autorzy:
Hamdan, Mohammad A.
Ata, Mohammad F. Bani
Sakhrieh, Ahmad H.
Powiązania:
https://bibliotekanauki.pl/articles/1838392.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
air pollutant
ANN
MATLAB
forecasting
Opis:
Air pollution is a major obstacle faced by all countries which impacts the environment, public health, socioeconomics, and agriculture. In this study, the air pollutants in the city of Amman were presented and analyzed. Nonlinear Autoregressive Exogenous (NARX) model was used to forecast the daily average levels of pollutants in Amman, Jordan. The model was built using the MATLAB software. The model utilized a Marquardt-Levenberg learning algorithm. Its performance was presented using different indices, R2 (Coefficient of Determination), R (Coefficient of Correlation), NMSE (Normalized Mean Square Error), and Plots representing network predictions vs original data. Historical measurements of air pollutants were obtained from 4 of the Ministry of Environment (MoEnv) air quality monitoring stations in Amman. The meteorological data representing three years (2015, 2016, and 2017) were used as predictors to train the Artificial Neural Network (ANN) while the data of the year 2018 were used to test it. The results showed good performance when forecasting SO2, O3, CO, and NO2, and acceptable performance when forecasting Particulate Matter (PM10) at the given 4 locations.
Źródło:
Journal of Ecological Engineering; 2021, 22, 6; 1-11
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies