Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "NDS" wg kryterium: Temat


Tytuł:
Dietyloamina. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Diethylamine
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/137461.pdf
Data publikacji:
2005
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dietyloamina
NDS
narażenie zawodowe
diethylamine
MAC
occupational exposure
Opis:
Dietyloamina (DEN) jest bezbarwną o ostrym amoniakalnym zapachu oraz słonym smaku palną cieczą, która znalazła zastosowanie w syntezie chemicznej do produkcji: żywic, pestycydów i insektycydów, a także jako: przyspieszacz w przemyśle gumowym, inhibitor korozji i inhibitor polimeryzacji. Narażenie na dietyloaminę może występować także w przemyśle farmaceutycznym, gdzie jest wykorzystywana do produkcji disulfiramu, flurazepamu, lidokainy oraz w przemyśle barwników. Dietyloaminę można zaliczyć do substancji szkodliwych w kontakcie ze skórą i po połknięciu. Najmniejsza wyznaczona wartość LD50 dla szczurów po podaniu dożołądkowym wynosi 108 mg/kg m.c., natomiast dla myszy 130 mg/kg. Inne dane wskazują, że wartości te są większe i wynoszą odpowiednio 540 mg/kg dla szczura i 500 mg/kg dla myszy. Wartość LD50 po podaniu na skórę wyznaczona dla królika wynosi 820 mg/kg . Głównym skutkiem działania dietyloaminy jest działanie żrące i drażniące. Narządami krytycznymi w przypadku narażenia zarówno na pary dietyloaminy, jak i ciekłą aminę są: oczy, skóra i układ oddechowy. W eksperymencie na ochotnikach nie udało się wyznaczyć wielkości najmniejszego stężenia dietyloaminy, które może spowodować wystąpienie objawów działania drażniącego na oczy i nos, jednak oszacowano, że objawy te pojawiają się po narażeniu na dietyloaminę o stężeniu wynoszącym 30 mg/m3. Powtarzane narażenie zwierząt na pary dietyloaminy powoduje działanie drażniące na układ oddechowy u zwierząt. W eksperymencie inhalacyjnym, 24-tygodniowym na szczurach F-344 nie obserwowano skutków działania drażniącego dietyloaminy o stężeniu 75 mg/m3. Nie wykonano jednak badań histopatologicznych błony śluzowej nosa. U szczurów narażonych na DEN o stężeniu 750 mg/m3 stwierdzono objawy podrażnienia przejawiające się występowaniem wydzieliny zapalnej z nosa, łzawieniem, zaczerwienieniem nosa, zmianami zwyrodnieniowymi w nabłonku pod postacią płaskonabłonkowej metaplazji (8/14 u samców i 13/13 u samic), rozrostu limfoidalnego (odpowiednio 7/14 i 6/13) oraz ropnego nieżytu nosa (13/14 i 13/13). Komitet Naukowy ds. Ustalania Dopuszczalnych Poziomów Narażenia Zawodowego w Unii Europejskiej (SCOEL) przyjął stężenie 75 mg/m3 za wartość LOAEL dla działania drażniącego dietyloaminy, pomimo wątpliwości spowodowanych brakiem badań histopatologicznych narażenia na związek o tym stężeniu. Eksperci SCOEL powołują się na niepublikowany raport NIOSH z 1983 r., w którym opisano skutki narażenia szczurów na dietyloaminę o stężeniu 75 mg/m3 po 30; 60 i 120 dniach narażenia. Z raportu tego wynika, że nie obserwowano skutków działania drażniącego dietyloaminy u zwierząt narażanych przez 30 i 60 dni, natomiast zmiany zwyrodnieniowe w nabłonku pod postacią płaskonabłonkowej metaplazji stwierdzono po 120 dniach narażenia. W doświadczeniach na myszach wyznaczono wartość RD50 dietyloaminy, która wynosi 550 lub 606 mg/m3. Do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) dietyloaminy posłużyły dane zawarte w dokumentacji Unii Europejskiej. Za wartość LOAEL dla działania drażniącego przyjęto stężenie dietyloaminy wynoszące 75 mg/m3. Zastosowano łączny współczynnik niepewności równy 4, związany z wrażliwością osobniczą człowieka i stosowaniem wartości LOAEL zamiast wartości NOAEL. Jednocześnie wartość NDS wyliczono jako 1/30 wartości RD50 wyznaczonej na podstawie wyników badań na myszach. Proponuje się przyjęcie wartości NDS dietyloaminy wynoszącej 15 mg/m3, co jest zgodne z wartością dopuszczalną ustaloną w Unii Europejskiej oraz wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) wynoszącej 30 mg/m3. Zaleca się oznakowanie substancji literami „Sk” – wchłania się przez skórę, ponieważ wyznaczona wartość LD50s < 1000 mg/kg m.c. i wynosi dla królika 630 - 820 mg/kg. Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia biologicznego (DSB) dietyloaminy.
Diethylamine is an alkaline, colourless, volatile liquid with a strong ammoniacal odour. The human olfactory threshold is 0.42 mg/m3. Diethylamine is used in the production of the corrosion inhibitor, and in the production of some pesticides and insect repellents, pharmaceuticals (e.g., the alcohol antagonist disulfiram ANTABUS, flurazepam, lidocaine) and rubber processig chemicals. After a single oral exposure the LD50 was 108 mg/kg body weight in the rat and 130 mg/kg bw in the mouse. After dermal exposure the LD50 was 820 mg/kg bw in rabbits. Acute DEN exposure produces severe irritation or corrosion to the eyes and skin of laboratory animals and of humans. Irritation was seen in humans exposed to 30 mg/m3. Repeated inhalation exposure to DEN vapour also produces irritation of the upper respiratory tract of rodents. The RD50 was 550 or 606 mg.m3 in the mouse. Using the NIOSH summary report of the pathology seen in this study, 75 mg/m3 was an LOAEL. Based on the LOAEL, an 8-hour TWA value of 15 mg/m3 has been recommended. In order to minimize irritation symptoms, STEL of 30 mg/m3 has been recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2005, 2 (44); 51-73
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chlorooctan metylu. Dokumentacja dopuszczalnych wielkości narażenia zawodowego
Methyl chloroacetate. Documentation
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/137724.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
chlorooctan metylu
NDS
narażenie zawodowe
methyl chloroacetate
MAC
OEL
Opis:
Chlorooctan metylu jest palną, bezbarwną cieczą o charakterystycznym zapachu. Jest stosowany głównie jako rozpuszczalnik oraz w syntezie organicznej jako półprodukt do otrzymywania witaminy A i fluorooctanu sodu, a także rodentycydów. Substancja działa żrąco na skórę, oczy i wykazuje działanie drażniące na górne drogi oddechowe i płuca przejawiające się zaczerwienieniem skóry, a także bolesnymi oparzeniami, silnym łzawieniem, zaczerwienieniem i bólem oczu, zaburzeniami widzenia oraz kaszlem i bólem gardła. Po spożyciu chlorooctanu metylu mogą wystąpić bóle brzucha, nudności, wymioty i biegunka. Siła miejscowego działania żrącego jest porównywalna do siły działania kwasu chlorooctowego. U ludzi narażonych zawodowo na pary chloroctanu metylu występowało silne podrażnienie spojówek, zwykle po krótkim okresie latencji. Chlorooctan metylu można zaliczyć – zgodnie z klasyfikacją toksyczności według Unii Europejskiej – do substancji toksycznych, niezależnie od drogi podania. Nie wykazano działania mutagennego chlorooctanu metylu na bakteriach Salmonella typhimurium. Nie obserwowano wzrostu częstości występowania nowotworów płuc u myszy szczepu A po dootrzewnowym podaniu chlorooctanu metylu w doświadczeniu krótkoterminowym. W Polsce dotychczas nie ustalono wartości normatywów higienicznych dla chlorooctanu metylu. Przyjmując za efekt krytyczny działanie drażniące chlorooctanu metylu, proponuje się przyjęcie do wyliczenia wartości NDS wartość NOAEL wyznaczoną w doświadczeniu inhalacyjnym 28-dniowym na szczurach, która wynosi 44 mg/m3. Zastosowano następujące współczynniki niepewności: współczynnik A równy 2, związany z wrażliwością osobniczą człowieka, współczynnik B równy 2, związany z różnicami międzygatunkowymi oraz współczynnik C równy 2, związany z przejściem z badań krótkoterminowych do przewlekłych. Proponuje się także przyjęcie wartości NDS chlorooctanu metylu równej 5 mg/m3 i wartości NDSCh równej 2 wartość NDS, tj. 10 mg/m3, ze względu na silne działanie drażniące substancji. Proponuje się także oznakowanie chlorooctanu metylu symbolem „I” – substancja drażniąca oraz „Sk” – substancja wchłania się przez skórę.
Methyl chloroacetate is a flammable, colorless liquid with a sweet, pungent odor. It is used as a solvent and an intermediate for organic synthesis. The toxicity ot this compound is high. For rats exposed once for 4 hours, the LC50 was about 1350 mg/m3. The substance affects breathing, produces eye irritation, corneal clouding, cyanosis, and non-specific symptoms of intoxication. It is irritant and corrosive to all tissues. After either a single or repeated inhalation exposure, the main effect is local irritation. Methyl chloroacetate vapour led to delayed eye irritation in exposed workers. Groups of five male and five female rats were exposed to methyl chloroacetate vapour concentrations of 44; 146, 443 mg/m3 for 6 hours daily, 5 days per week, for 28 days. In addition to irritation, effects on breathing and coordination were seen in animals from the 443 mg/m3 group. In the animals from the 146 mg/m3 group, substancespecific irritation of the mucous membranes was observed. The concentration of 44 mg/m3 is given as the no effect level. Based on these animal data the Expert Group for Chemical Agents established an 8-hour TWA value of 5 mg/m3, and a STEL value of 10 mg/m3. The notations: “I” (irritating substance) and “Sk” (substance absorbed through the skin) were proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 1 (47); 97-107
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trichloroeten
Trichloroethylene
Autorzy:
Jankowska, A.
Bystry, K.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138203.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
trichloroetan
TRI
NDS
narażenie zawodowe
trichloroethylene
MAC
occupational exposure
Opis:
Trichloroeten (Tri) jest lotną, przezroczystą, bez barwną cieczą o słodkim eterycznym zapachu, zbliżonym do zapachu chloroformu. Substancja jest stosowana do odtłuszczania metali oraz jako rozpuszczalnik, Pary trichloroetenu drażnią błony śluzowe nosa i gardła, powodują także podrażnienia skóry i oczu. U ludzi trichloroeten w warunkach narażenia inhalacyjnego działa hamująco na czynności ośrodkowego układu nerwowego i wywołuje: bóle i zawroty głowy, senność, nudności i utratę przytomności. Narażenie na trichloroeten o dużych stężeniach powodowało zgon. Trichloroeten wykazuje również działanie nefrotoksyczne oraz hepatotoksyczne. Według danych Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki i Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonego w Instytucie Medycyny Pracy w Łodzi, na działanie trichloroetenu w 2011 r. było narażonych 1239 pracowników, którzy byli zatrudnieni: przy ekstrakcji tłuszczów z nasion, czyszczeniu i odtłuszczaniu metali, w przemyśle gumowym, farb i atramentów drukarskich oraz lakierów. W 2010 r., zgodnie z danymi Głównego Inspektoratu Sanitarnego, 5 osób było narażonych na trichloroeten o stężeniach większych od obowiązującej wartości NDS, czyli 50 mg/m w tym 2 oso by były zatrudnione przy produkcji wyrobów metalowych, a 3 osoby - przy innej produkcji nie- sklasyfikowanej. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na trichloroeten było: upośledzenie funkcji OUN, skutki nefrotoksyczne, hepatotoksyczne oraz wakuolizacja komórek Clara płuc u myszy. W komórkach ssaków w warunkach in vitro czysty trichloroeten wywoływał: transformację komórek, wymianę chromatyd siostrzanych, mutację genów, lecz nie powodował aberracji chromosomów. W dostępnym piśmiennictwie istnieją ograniczone dowody działania rakotwórczego trichloroetenu na ludzi. Wyniki kilku badań kohortowych ludzi narażonych zawodowo na trichloroeten wykazały zwiększone ryzyko zachorowania na: nowotwory wątroby, przewodów żółciowych i nerek, a także na chłoniaka nieziarniczego. Narażenie myszy na trichloroeten drogą pokarmową prowadziło do wzrostu częstości nowotworów wątroby. Związek indukował u myszy i szczurów także nowotwory o innej lokalizacji. Eksperci IARC zaliczyli trichloroeten do gru 2A - grupy substancji prawdopodobnie kancerogennych dla ludzi. Wyniki badań dotyczących wpływu trichloroetenu na rozrodczość ludzi nie dostarczyły jednoznacznych dowodów działania toksycznego związku. dostępnym piśmiennictwie i bazach danych nie znaleziono informacji o wynikach badań epidemiologicznych dotyczących narażenia zawodowe go na trichloroeten, w których ryzyko skutku teratogennego zależałoby znacząco od narażenia na tę substancję. Trichloroeten jest dobrze wchłaniany wszystkimi drogami narażenia: w postaci par wchłania się układzie oddechowym, a ciekły w przewodzie pokarmowym oraz przez skórę. Metabolizm trichloroetenu w organizmie przebiega z udziałem cytochromu P-450 i glutationu Główne metabolity trichloroetenu - trichloroetan i kwas trichlorooctowy, są wydalane z moczem częściowo w postaci glukuronidów. Te dwa metabolity są stosowane jako biochemiczne wskaźniki narażenia. Część wchłoniętego trichloroetenu je wydalana z powietrzem wydychanym w postaci niezmienionej. Wydalanie trichloroetenu z powietrzem oraz wydalanie metabolitów przebieg wielofazowo. Wartość najwyższego dopuszczalnego stężeni (NDS) trichtoroetenu ustalono na podstawie działania jego neurotoksycznego oraz nefrotoksycze go. Proponuje się utrzymanie obowiązującej wartości NDS trichloroetenu, czyli 50 mg/m3 Z uwagi na działanie drażniące substancji oraz działanie par trichloroetenu na OUN, proponuje się przyjęcie wartości najwyższego dopuszczalnego stężeni chwilowego (NDSCh) na poziomie 100 mg/m3 (2 razy wartość NDS). Proponuje się także utrzymanie dotychczas zalecanej wartości dopuszczalnego stężenia w materiale biologicznym (DSB) n poziomie 20 mg TCA/1 moczu. Zaleca się również oznakowanie związku literam „l”- substancja o działaniu drażniącym, „Sk” substancja wchłania się przez skórę oraz „Rakotw.kat. 2.” — substancja rakotwórcza kategorii 2.
Trichloroethylene (Tri) is a volatile, colorless Iiquid with a sweetish odor resembling chloro form. Tri is mainly used in metal degreasing and as a solvent. Tri vapor is irritating to the eyes, nose, throat (mucous membranes) and skin. Human exposure to Tri results in CNS depression. Headache, dizziness, drowsiness, nausea, unconsciousness and death after exposure to very high concentrations have been observed. High doses of Tri produce hepatotoxicity and nephrotoxicity. After inhalation of Tri by laboratory animais, some adverse effects have been observed in CNS, liver, kidneys and Clara cells in mouse. In vitro studies in mammalian cells suggest that Tri can cause ceil transformation, sister chromatid exchange, gene mutations but does not produce chromosomal aberrations. There is limited evidence in humans for the carcinogenicity of Tri. The results of cohort studies indicate excessive risk of liver, biliary duct and kidney cancer and excessive risk of non Hodgkin’s lymphoma. Tri has produced liver tumours in mice after per os exposure as well as tumors at other sites in mice and rats. According to IARC, Tri is probably carcinogenic to humans (group 2A). The results of available studies show no consistent effects of Tri on the human reproductive system. To determine MAC value for Tri neurotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents suggest maintaining the current MAC value of 50 mg/m Due to the irritating potential of Tri vapors to CNS, a 5TEL value of 100 mg/m (2 X MAC) has been proposed. It has been also proposed to label the substance with „1” (irritant), Sk (substance can penetrate skin) and „Rakotw. kat. 2” (carcinogen category 2). The current BEI value of 20 mg TCA/I urine is maintained.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 4 (78); 83-118
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kobalt i jego związki nieorganiczne – w przeliczeniu na Co
Cobalt
Autorzy:
Sapota, A.
Daragó, A.
Powiązania:
https://bibliotekanauki.pl/articles/137354.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kobalt
toksyczność
narażenie zawodowe
NDS
cobalt
toxicity
occupational exposure
MAC
Opis:
W większości związków kobalt (Co) występuje na II lub III stopniu wartościowości. Związki kobaltu(III) reagują z różnymi kwasami, tworząc sole, podczas gdy kobalt(II) jest mniej reaktywny. Pierwiastek ten występuje w organizmach żywych i jest zaliczany do mikroelementów oraz jest składnikiem witaminy B12. Kobalt jest stosowany jako składnik stopów stali szybkotnących (stopy zawierające 45 ÷ 50% kobaltu i 25 ÷ 30% chromu), stopów magnetycznie twardych, twardych stopów narzędziowych itp. Związki kobaltu są stosowane do produkcji farb (błękit Thenarda, smalta) i lakierów w przemysłach szklarskim i ceramicznym. W warunkach przemysłowych występuje głównie narażenie na kobalt w postaci dymów i pyłów. Szacuje się, że obecnie w Polsce narażonych na kobalt i jego związki jest około 5000 osób. W 2000 r. w jednym z zakładów województwa śląskiego stwierdzono narażenie pracowników na ponadnormatywne stężenie kobaltu metalicznego (dymy, pyły). Narażonych było 20 osób zatrudnionych przy produkcji gotowych wyrobów metalowych (z wyjątkiem maszyn i innych urządzeń). Natomiast wg danych Głównej Inspekcji Sanitarnej w 2007 r. nie było przekroczeń wartości NDS (0,05 mg/m3) kobaltu metalicznego (dymy i pyły). Nie ma danych w dostępnym piśmiennictwie dotyczących ostrych zatruć kobaltem u ludzi. Zatrucia przewlekłe niezawodowe spowodowane spożyciem dużej ilości piwa z dodatkiem siarczanu kobaltu spowodowały uszkodzenie mięśnia sercowego, zwiększenie liczby czerwonych krwinek (czerwienica) i zaburzenie metabolizmu tarczycy. U ludzi narażonych na kobalt drogą inhalacyjną i dermalną obserwowano alergię i słabe działanie drażniące. Układem krytycznym działania kobaltu jest układ oddechowy, w którym najczęściej obserwowano zmiany o typie astmatycznym i podłożu alergicznym, a także zmiany czynnościowe polegające na upośledzeniu wydolności oddechowej. Na podstawie wyników badań toksyczności ostrej kobalt i jego związki nieorganiczne można zaklasyfikować do czynników toksycznych lub szkodliwych. W badaniach przewlekłych główne skutki działania toksycznego kobaltu dotyczyły zmian zapalnych i martwiczych nabłonka dróg oddechowych, a w większych dawkach zmian zwłóknieniowych dolnych partii układu oddechowego. W badaniach wpływu na rozrodczość kobalt wykazywał działanie fetotoksyczne. Badania NTP wykazały działanie rakotwórcze siarczanu kobaltu u myszy i szczurów. IARC zaklasyfikował kobalt i jego związki nieorganiczne do grupy 2B (związki o udowodnionym działaniu rakotwórczym na zwierzęta i nieudowodnionym działaniu rakotwórczym na ludzi). Do ustalenia wartości NDS dla kobaltu i jego związków nieorganicznych za skutek krytyczny przyjęto zmiany astmatyczne w układzie oddechowym o podłożu alergicznym, które manifestowały się kaszlem, świszczącym oddechem oraz spłyceniem oddechu. Zespół tych objawów określa się jako „hard metal asthma”. Większość opisywanych przypadków astmy było związanych z narażeniem na kobalt w przemyśle metali ciężkich. U kilku pacjentów z objawami “hard metal asthma” w badaniach immunolo-gicznych wykazano obecność specyficznych przeciwciał i/lub pozytywny wynik testu transformacji limfocytów. Badania te dotyczyły osób narażonych zarówno na sole kobaltu, jak i metal oraz proszek metalu. Narażenie na pyły kobaltu u pracowników przemysłu metali ciężkich (produkcja metali) oraz w rafine-riach (produkcja kobaltu) wywoływało zmiany czynnościowe w drogach oddechowych polegające na upośledzeniu wydolności oddechowej. Działanie kobaltu na inne narządy i układy, a w szczególności na skórę, układ krążenia, krew oraz tarczycę występowało po znacznie większych dawkach lub stężeniach związku. Z tego względu skutki te pominięto przy ustalaniu wartości dopuszczalnego stężenia kobaltu w powietrzu na stanowiskach pracy. Za postawę do wyznaczenia wartości NDS kobaltu i jego związków nieorganicznych przyjęto wyniki badania przeprowadzonego w Finlandii wśród pracowników zatrudnionych przy produkcji kobaltu. Na podstawie wyników badań stwierdzono, że ryzyko astmy wzrastało 5-krotnie u pracowników narażonych na siarczan kobaltu o stężeniu 0,1 mg/m3 (w przeliczeniu na kobalt). U pracowni-ków narażonych na aerozol siarczanu kobaltu o stężeniach < 0,1 mg/m3 przez 6 ÷ 8 lat nie wykazano wzrostu ryzyka przewlekłego zapalenia oskrzeli.Stężenie kobaltu wynoszące 0,1 mg/m3 przyjęto za wartość LOAEL i przy zastosowaniu odpowiednich współczynników niepewności zaproponowano wartość NDS równą 0,02 mg/m3 zarówno dla kobaltu, jak i jego związków nieorganicznych z uwzględnieniem narażenia na pyły zawierające kobalt. Wartość normatywu higienicznego na tym samym poziomie przyjęto w ACGIH i w Holandii. Mniejszą wartość normatywną kobaltu wynoszącą 0,01 mg/m3 przyjęto w Danii. W Niemczech, ze względu na udowodnione działanie rakotwórcze kobaltu u zwierząt doświadczalnych, nie ustalono dla kobaltu wartości MAK (grupa 3A). Nie było także wystarczających danych do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) kobaltu. Zaproponowano natomiast przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla stężeń kobaltu w moczu 15 g/l moczu (g/g kreatyniny) i we krwi 1 g/l. Przyjęto także, że normatyw należy oznaczyć literami: ,,I” – sub-stancja o działaniu drażniącym; „A” – substancja o działaniu uczulającym, „Ft” – substancja działa toksycznie na płód oraz „Rakotw.” – kategorię rakotwórczości związków należy ustalić na podstawie wykazu substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem, np. dichlorek kobaltu – Rakotw. Kat. 2; R49; siarczan(VI) kobaltu – Rakotw. Kat. 2; R49.
In most compounds, cobalt (Co) occurs at level II or level III of its value. Co compounds (III) react with different acids, producing salts, whereas the reactivity of Co II is less pronounced. This element, present in living organisms, is a microelement and is a component of vitamin B12. It is an essential component of alloys used in high-speed-cutting steel tools (alloys containing 45–50% of Co and 25–30 % of chromium), hard magnets, hard tools and others. Co compounds are used in the production of paints (Thénard blue, smalt) and lacquers in the glass-making and ceramic industries. In industrial conditions, fumes and dusts are the major sources of exposure. It is estimated that in Poland about 5000 persons are exposed to cobalt and its compounds. In 2000, an excessive exposure of workers to metallic Co (fumes and dusts) was found in a plant in the Silesian voivodeship. Twen-ty persons involved in the manufacture of ready-made metallic products (except for machines and other devices) were exposed; however, according to 2007 data provided by the Chief Sanitary In-spectorate, Co (fumes and dusts) maximum admissible concentrations (MAC = 0.05 mg/m3) were not exceeded. In the literature there are no data on Co acute intoxications in humans. Non-occupational chronic intoxications due to consumption of large quantities of cobalt sulfate fortified beer induced myocar-dial lesion, enhanced red blood cell count (polycythemia) and disturbed thyroid metabolism. In persons exposed to cobalt via inhalation and absorption through the skin, allergies and irritations are observed. The respiratory tract is its major target organ, hence asthma- and allergy-like lesions, as well as functional changes, involving the impairment of lung functions are most frequent. On the basis of the results of acute toxicity studies, cobalt and its inorganic compounds can be classi-fied as toxic or hazardous agents. Studies of chronic effects showed that inflammatory and necrotic lesions of respiratory epithelium are the main consequences of cobalt toxicity, and fibrosis of the lower parts of the respiratory tract can also be induced in the case of higher doses. The National Toxicology Program studies have evidenced carcinogenic effect of cobalt sulfate and the Internation-al Agency for Research on Cancer (IARC) has categorized cobalt and its compounds as group 2B (sufficient evidence of carcinogenicity in experimental animals and inadequate evidence in humans). To determine MAC values for cobalt and its inorganic compounds, allergic asthma lesions mani-fested by wheezing cough and shortness of breath were adopted as a critical effect. The syndrome comprising these manifestations is termed hard metal asthma. Most reported asthma cases were linked with exposure to cobalt in the heavy metal industry. In several cobalt-exposed patients with symptoms of hard metal asthma, immunological tests revealed the presence of specific antibodies and/or positive lymphocyte transformation test. Those persons had been exposed to cobalt salts, metallic cobalt and metallic powder. Exposure to cobalt dust in workers employed in the hard metal industry (metal production) and refineries (cobalt production) induced changes in respiratory functions, involving the impairment of 94 respiration efficiency. Co effects on other organs and systems, in general, and on the skin, circulatory system and thyroid gland, in particular, have been observed after higher doses or higher compound concentrations. That is why these effects have been disregarded in setting MAC values in the workstation ambient air. The results of a Finnish study carried out in workers engaged in cobalt production have been adopted as a basis for setting MAC values for cobalt and its inorganic compounds. These find-ings evidenced a five-fold increase in asthma incidence in workers exposed to Co sulfate at a concentration of 0.1 mg/m3 (converted into cobalt). In workers exposed to cobalt sulfate aerosol at a concentration of < 0.1 mg/m3 for 6 – 8 years no enhanced risk of chronic bronchitis has been found. Cobalt concentration of 0.1 mg/m3 has been adopted as the value of the lowest observed adverse effect level (LOAEL) and applying relevant uncertainty coefficients MAC value = 0.02 has been pro-posed for cobalt and its inorganic compounds, taking account of exposure to cobalt-containing dusts. The hygiene standard value at the same level was adopted by the American Conference of Govern-mental Industrial Hygiene (ACGIH) and in The Netherlands. A lower value (0.01 mg/m3) was adopted in Denmark. In Germany, the MAC value for cobalt has not been set on account of its suffi-ciently evidenced carcinogenicity in experimental animals (group 3A). Moreover, the data were in-sufficient to propose a short-term MAC (STMAC) value for cobalt. However, it has been suggested to adopt the value of admissible concentration in biological material (ACB) for Co concentration in urine, 15 μg/l urine (μg/g creatinine) and in blood, 1μg/l. The following standard denotations have been adopted: “I” – irritating substance; “A” – sensitizing substance; “Ft” – fetus toxic substance; and “Carcinogenic” – the category of carcinogenicity of compounds should be determined on the basis of the list of hazardous substances along with its classification and denotation, e.g., cobalt dich-loride – Carcinogenic, Cat. 2; R49; cobalt sulfate (VI) – Carcinogenic, Cat. 2; R49.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 47-94
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cisplatyna : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Cisplatin : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Pałaszewska-Tkacz, A.
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137504.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
cisplatyna
toksyczność
narażenie zawodowe
NDS
cisplatin
toxicity
occupational exposure
MAC
Opis:
Cisplatyna jest cytostatykiem stosowanym w terapii raka: jądra, jajnika, pęcherza moczowego, kolczystokomórkowego głowy i szyi, drobnokomórkowego i niedrobnokomórkowego płuca oraz szyjki macicy. Dla personelu medycznego jest dostępna w postaci ampułek 10 lub 50 mg z koncentratem do sporządzania roztworu do infuzji (1 mg cisplatyny/ml). Narażenie zawodowe na cisplatynę może wystąpić podczas produkcji oraz w czasie stosowania leku na oddziałach szpitalnych. Narażenie przy produkcji stanowi mniejszy problem, ponieważ dotyczy stosunkowo wąskiej grupy pracowników firm farmaceutycznych, podlegających wymogom dobrej praktyki wytwarzania i restrykcyjnej kontroli narażenia. Znacznie większą grupę osób zawodowo narażonych na cisplatynę stanowią pracownicy służby zdrowia (pielęgniarki, lekarze, farmaceuci, salowe, osoby sprzątające, pracownicy pralni) opiekujący się i mający kontakt z leczonym pacjentem. Źródłem narażenia dla personelu medycznego i pomocniczego może być przygotowywany i podawany lek oraz wydaliny i wydzieliny chorych. Głównymi drogami narażenia zawodowego w trakcie procesów produkcji cisplatyny są układ oddechowy i skóra. W warunkach szpitalnych to skóra stanowi główną drogę narażenia, chociaż nie można wykluczyć również narażenia inhalacyjnego, głównie na aerozole cisplatyny. Największe stężenia cisplatyny w powietrzu środowiska pracy wynosiły < 5,3 ng/m3, natomiast na różnych powierzchniach pomieszczeń aptecznych i szpitalnych, sprzęcie zabiegowym i rękawicach, stężenia nie przekraczały 110 ng/cm2. Brak jest danych ilościowych dotyczących wchłaniania cisplatyny przez skórę lub przez drogi oddechowe u ludzi, wiadomo natomiast, że związek może wchłaniać się tymi drogami, o czym świadczą wyniki badań prowadzonych wśród farmaceutów i personelu medycznego, u których stwierdzano istotnie większe stężenia platyny (Pt) w moczu w porównaniu z grupą kontrolną. Informacje dotyczące skutków zdrowotnych narażenia zawodowego na cisplatynę są bardzo nieliczne. Opisano jedynie przypadki alergii zawodowej objawiającej się pokrzywką. Dane dostępne w piśmiennictwie dotyczą głównie działań niepożądanych u pacjentów leczonych cisplatyną. Najczęściej zgłaszane działania niepożądane cisplatyny to zaburzenia: czynności nerek, hematologiczne, słuchu, żołądkowo-jelitowe oraz neuropatie. U około 1/3 pacjentów już po podaniu pojedynczej dawki cisplatyny (50 mg/m2) obserwowano skutki działania toksycznego związku na: nerki, szpik kostny i słuch. Skutki działania nefrotoksycznego, ototoksycznego i neurotoksycznego cisplatyny mogą mieć charakter długotrwały i nieprzemijający. W badaniach toksyczności cisplatyny na zwierzętach związek podawano wyłącznie dootrzewnowo lub dożylnie. Cisplatyna działała głównie na nerki zwierząt, wywołując zmiany biochemiczne (m.in. zwiększenie stężenia kreatyniny i azotu mocznikowego w surowicy), a w obrazie histopatologicznym martwicę w proksymalnych kanalikach nerkowych. Ponadto obserwowano zmiany aktywności enzymów wątrobowych, liczne ogniska zapalne oraz martwice wątroby, a także nieprawidłowości w rozmieszczeniu komórek wydzielniczych i aktywności enzymów bariery jelitowej oraz zmiany histopatologiczne w jelicie cienkim, które zaburzały procesy trawienne i prowadziły do zaburzenia łaknienia u zwierząt. Cisplatyna działała również ototoksycznie, prowadząc do utraty słuchu u gryzoni. Obserwowano ponadto zmiany w obrazie krwi i zaburzenia w obrębie układu krwiotwórczego. U narażanych zwierząt wystąpiły: leukopenia, zmniejszona liczba neutrofili, limfocytów oraz płytek, a także zahamowanie czynności szpiku kostnego. W testach neurobehawioralnych u zwierząt cisplatyna wywoływała zmniejszenie aktywności ruchowej. Cisplatyna działała mutagennie w testach na bakteriach oraz na komórkach ssaków, w tym na ludzkich limfocytach. Wywoływała wzrost częstości wymian chromatyd siostrzanych i aberracje chromosomowe. Odnotowano dodatnie wyniki testu kometowego oraz mikrojądrowego. Jednym z opisywanych działań ubocznych terapii cisplatyną jest jej działanie rakotwórcze. W literaturze opisano przypadki ostrej białaczki nielimfoblastycznej u pacjentek leczonych wyłącznie cisplatyną i karboplatyną 6 lat po zakończeniu chemioterapii. W dostępnym piśmiennictwie brak jest danych dotyczących przypadków zachorowania na nowotwory pracowników zawodowo narażonych wyłącznie na cisplatynę. Istniejące doniesienia dotyczą jednoczesnego narażenia na różne cytostatyki. U myszy i szczurów po podaniu dootrzewnowym cisplatyny wykazano jej działanie rakotwórcze. U myszy narażanych na cisplatynę obserwowano zwiększoną liczbę i częstość występowania gruczolaków płuc. Po narażeniu zwierząt na cisplatynę dootrzewnowo, a ponadto na olej krotonowy naskórnie, odnotowano brodawczaki skóry. U narażanych szczurów cisplatyna indukowała białaczki. W IARC zaklasyfikowano cisplatynę jako substancję prawdopodobnie rakotwórczą dla ludzi (grupa 2.A). W DECOS uznano ją za kancerogen genotoksyczny, również NTP klasyfikuje ją jako substancję potencjalnie rakotwórczą dla ludzi. Pomimo że cisplatyna nie została urzędowo zaklasyfikowana w UE i brak jej klasyfikacji zharmonizowanej, większość producentów klasyfikuje ten związek jako działający rakotwórczo kategorii zagrożenia 1.B. Nie ma w dostępnym piśmiennictwie danych o przypadkach klinicznych i wynikach badań epidemiologicznych dotyczących wpływu cisplatyny na płód i rozrodczość wskutek narażenia zawodowego na ten związek. Na podstawie opisanych przypadków ciężarnych leczonych cisplatyną wiadomo, że związek ten przenika przez łożysko oraz do mleka matki. U dzieci 20% pacjentek leczonych cisplatyną w pierwszym trymestrze ciąży oraz u 1% dzieci pacjentek leczonych w drugim i/lub trzecim trymestrze ciąży wystąpiły poważne wady rozwojowe. U mężczyzn przewlekłe podawanie cisplatyny wywoływało odwracalną azoospermię oraz dysfunkcję komórek Leydig’a. Spośród 61 kobiet chorych na raka jajnika poddanych zachowawczemu zabiegowi chirurgicznemu i chemioterapii cisplatyną w wieku rozrodczym 47% urodziło dzieci w okresie po terapii, a 87% starających się zaszło w ciążę. W badaniach na zwierzętach laboratoryjnych cisplatyna działała wysoce embriotoksycznie. Rzadziej obserwowano zmiany teratogenne. Cisplatyna wpływała także na aktywność jajników. Na podstawie dostępnych w piśmiennictwie danych dotyczących toksyczności cisplatyny u ludzi i zwierząt nie jest możliwe ustalenie zależności dawka-odpowiedź. Z analizy klasyfikacji leków stosowanych przez: ASHP, NIOSH, IACP, IPCS wynika, że wartość najwyższego dopuszczalnego stężenia (NDS) cisplatyny w środowisku pracy powinna mieścić się w granicach 0,001 ÷ 0,01 mg/m3. Biorąc pod uwagę ilościową ocenę rakotwórczości cisplatyny wykonaną przez ekspertów DECOS oraz akceptowalny poziom ryzyka zawodowego ustalony przez Międzyresortową Komisję ds. NDS i NDN (10-3 ÷ 10-4) dla kancerogenów, dopuszczalne stężenia cisplatyny w środowisku pracy powinny mieścić się w zakresie 0,005 ÷ 0,0005 mg/m3. W większości państw (w: USA, Belgii, Szwajcarii i na Węgrzech) ustalono wartości dopuszczalnych stężeń dla tego związku na poziomie 0,002 mg/m3. Zaproponowano wartość NDS cisplatyny na poziomie 0,002 mg/m3, a ponadto oznakowanie: Carc. 1B – substancja rakotwórcza kategorii zagrożenia 1.B; „Ft” – substancja działająca szkodliwie na płód oraz „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Brak jest podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB) dla cisplatyny.
Cisplatin is a cytostatic used in the treatment of testicular, ovarian, cervix and bladder cancers, squamous cell carcinoma of a head and a neck, small cell and non-small cell lung cancer. For medical staff, it is available in ampoules of 10 or 50 mg with a concentrate for solution for infusion (1 mg cisplatin/ml). Occupational exposure to cisplatin may occur during production and drug use in hospital wards. Exposure during production is a minor problem because it concerns a relatively narrow group of employees of pharmaceutical companies, that are subjected to requirements of good manufacturing practice and restrictive exposure control. A much larger group of workers exposed to cisplatin are health professionals (nurses, doctors, pharmacists, cleaning service, laundry workers) who care for and have contact with treated patients. The source of exposure for medical and auxiliary personnel may be preparation and administration of drug and excretions and secretions of patients. The main routes of occupational exposure during cisplatin production processes are respiratory and skin. In hospitals, skin is the main route of exposure, although inhalation exposure cannot be excluded, mainly on cisplatin aerosols. The highest concentrations of cisplatin in the occupational environment air were < 5.3 ng/m3 , while on different surfaces of pharmacy and hospital rooms, surgical equipment and gloves, concentrations did not exceed 110 ng/cm2 . There are no quantitative data on the absorption of cisplatin through the skin or through the respiratory tract in humans, but it is known that the compound can absorb these routes, as demonstrated by studies conducted among pharmacists and medical personnel with significantly higher concentrations of platinum (Pt) in urine compared to the control group. There is little information on the health effects of occupational exposure to cisplatin. Only cases of occupational allergy manifesting by urticaria have been described. The data available in the literature refer mainly to adverse reactions in patients treated with cisplatin. The most commonly reported adverse effects of cisplatin are renal, haematological, hearing, gastrointestinal and neuropathic disorders. In about one third of patients, after the administration of a single dose of cisplatin (50 mg/m2 ), the toxic effects of the compound were observed on kidneys, bone marrow and hearing. The nephrotoxic, ototoxic and neurotoxic effects of cisplatin can be long-term and permanent. In animal toxicity studies with cisplatin, the compound was administered intraperitoneally or intravenously. Cisplatin affects mainly kidneys of animals, causing biochemical changes (including an increase creatinine and urea nitrogen levels in serum), and histopathological abnormalities, necrosis in the proximal renal tubules. Moreover, there were changes in liver enzymes activities, numerous inflammation and liver necrosis, and disorders in secretory cell distribution, intestinal barrier enzymes activities, and histopathological changes in the small intestine, which disturbed digestive processes and led to appetite disturbances in animals. Cisplatin is also ototoxic, leading to hearing loss in rodents. Changes in the blood parameters and disorders in the hematopoietic system have also been observed. Leukopenia, decreased number of neutrophils, lymphocytes and platelets, and bone marrow suppression occurred in exposed animals. In neurobehavioral tests in animals, cisplatin caused a decrease in physical activity. Cisplatin was mutagenic in tests on bacteria and on mammalian cells, including human lymphocytes. It evoked an increase in the frequency of sister chromatid exchanges and chromosomal aberrations. There were positive comet and micronucleus test results. One of the reported side effects of cisplatin therapy is its carcinogenic effect. The literature describes cases of acute non- -lymphoblastic leukemia in patients treated with cisplatin only and carboplatin 6 years after chemotherapy. In the available literature, there are no data on the incidence of cancer of workers professionally exposed only to cisplatin. The existing reports concern simultaneous exposure to various cytostatics. Cisplatin has been shown to be carcinogenic to mice and rats after intraperitoneal administration. In mice exposed to cisplatin an increased number and incidence of lung adenomas were observed. After exposure of animals to cisplatin intraperitoneally, and additionally to epidermal croton oil, skin papillomas were noticed. In the exposed rats, cisplatin induced leukemia. The cisplatin was classified by IARC experts as probably carcinogenic to humans (Group 2A). In DECOS, it was considered as genotoxic carcinogen, NTP also classifies it as a potentially carcinogenic substance for humans. Although cisplatin has not been officially classified in the EU and there is lack of its harmonized classification, most manufacturers classify this compound as a carcinogen 1B category. There is no data available in the literature on clinical cases and results of epidemiological studies on the effect of cisplatin on the fetus and reproduction due to occupational exposure to this compound. Based on the described cases of pregnant patients treated with cisplatin, this compound is known to cross the placenta and into breast milk. Serious malformations were observed in 20% of children of patients treated with cisplatin in the first trimester of pregnancy and 1% of children in patients treated in the second and/or third trimester of pregnancy. In men, chronic administration of cisplatin induced reversible azoospermia and Leydig cell dysfunction. Of the 61 women with ovarian cancer undergoing conservative surgery and cisplatin chemotherapy at reproductive age, 47% gave birth to children after treatment, and 87% of those trying to get pregnant, became pregnant. In laboratory animal studies, cisplatin was highly embryotoxic. Teratogenic changes were less frequently observed. Cisplatin also affected ovarian activity. Based on the cisplatin toxicity data available in humans and animals, it is not possible to determine the dose-response relationship. The analysis of the classification of drugs used by ASHP, NIOSH, IACP and IPCS shows that the cisplatin should have a permissible occupational exposure value within 0.001–0.01 mg/m3 . Considering the quantitative carcinogenicity assessment of cisplatin performed by DECOS experts and the acceptable level of occupational risk set by the Interdepartmental Commission on MAC (10-3–10-4 ) for carcinogens, acceptable concentrations of cisplatin in the work environment should be within 0.005 mg/m3–0.0005 mg/m3 . In most countries (in the USA, Belgium, Switzerland and Hungary), the occupational exposure limits for this compound were set at 0.002 mg/m3 . The maximum admissible concentration (MAC) value for cisplatin was proposed at 0.002 mg/m3 . It was proposed to label the substance as “Carc. 1B” – carcinogenic substance of category 1B, “Ft” – toxic to the fetus and “skin”, because absorption through the skin may be as important as inhalation. There are no substantive basis to establish the value of the short- -term (STEL) and permissible concentrations in biological material (DSB) for cisplatin.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 1 (95); 13-52
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pirydyna
Pyridine
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137629.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pirydyna
toksyczność
narażenie zawodowe
NDS
pyridine
toxicity
occupational exposure
MAC
Opis:
Pirydyna jest stosowana jako rozpuszczalnik: farb, gumy, produktów farmaceutycznych, żywic poliwęglanowych i środków impregnacyjnych do tkanin. Duże ilości pirydyny Są stosowane jako związek wyjściowy do produkcji: pochodnych pirydyny, piperydyny, pestycydów, leków i innych produktów. Zawodowe narażenie na pirydynę może występować podczas: jej produkcji, dalszego jej przerobu i dystrybucji, a także uwalniania związku jako produktu rozkładu węgla czy smoły węglowej oraz produktów zawierających pirydynę. Stężenia pirydyny w powietrzu środowiska pracy w drugiej połowie XX w. kształtowały się od 0,002 do około 20 mg/m. Według danych Głównego Inspektora Sanitarnego łączna liczba pracowników narażonych Polsce na pirydynę o stężeniach w zakresie od > 0,1 do 0,5 wartości NUS (tj. 5 mg/m wynosiła 31 osób w 2010 r. oraz 46 osób w 2011 r. Nie było pracowników narażonych na pirydynę o stężeniach przekraczających 0,5 wartości NDS. Dawkę śmiertelną pirydyny dla człowieka oszacowano na 0,5 ÷ 5,0 mg/kg m.c. W opisanych przypadkach zatruć ostrych pirydyną obserwowano po zatruciu drogą pokarmową: nudności, zawroty głowy, ból brzucha i przekrwienie bierne płuc. Po zatruciu inhalacyjnym pirydyną objawy wskazywały na działanie związku na ośrodkowy układ nerwowy i charakteryzowały się zaburzeniami mowy oraz rozległymi cechami niedotlenienia kory mózgu. Opisano także przypadki przewlekłego zatrucia pirydyną pracowników zatrudnionych w zakładach chemicznych, w których stężenia pirydyny w powietrzu wynosiły około 19 ÷ 42 mg/m Objawami zatrucia były: bóle i zawroty głowy, nerwowość, bezsenność, czasami nudności i wymioty. Na podstawie wyników nielicznych badań epidemiologicznych nie stwierdzono wzrostu umieralności u osób narażonych na pirydynę w latach 1961- -1983 w trzech zakładach w Wielkiej Brytanii. Na podstawie wyników badań toksyczności ostrej na zwierzętach doświadczalnych (szczurach, my szach, świnkach morskich, królikach i psach) wykazano, że pirydyna należy do związków szkodliwych (Xn). Związek ten wykazywał słabe działanie drażniące na skórę królików i nie powodował uczulenia skóry w badaniach na świnkach morskich. W badaniach podprzewlekłych i przewlekłych, w których pirydynę podawano zwierzętom w różnych dawkach drogą pokarmową (p.o. lub w wodzie do picia), u zwierząt obserwowano: zmniejszenie przyrostu masy ciała, uszkodzenie wątroby i nerek oraz wpływ związku na układ rozrodczy. Pirydyna nie wykazała działania mutagennego. Na podstawie wyników badań na szczurach i myszach w programie NTP uznano, że dowód działania rakotwórczego pirydyny na szczury jest niejedno znaczny, natomiast istnieje wyraźny dowód działania rakotwórczego związku na myszy. W IARC zaliczono pirydynę do grupy 3., tj. związków nie- klasyfikowanych pod względem rakotwórczości dla ludzi. Za krytyczne skutki u ludzi po powtarzanym narażeniu na pirydynę uznano działanie depresyjne związku na ośrodkowy układ nerwowy (OUN) oraz skutki działania na wątrobę i nerki, będące najwcześniejszymi objawami toksycznego działania związku na gryzonie. Do wyprowadzenia wartości najwyższego dopuszczalnego stężenia (NDS) pirydyny przyjęto dane dotyczące skutków przewlekłego narażenia myszy i szczurów na związek drogą pokarmową. Wartości NOAEL/LOAEL dla podprzewlekłych i przewlekłych doświadczeń na gryzoniach mieszczą się w zakresie dawek od <7 do 50 mg/kg m.c. Na podstawie wyników 2-letnich badań, w których szczurom szczepu F344/N lub Wistar podawano pirydynę z wodą do picia, wykazano, że po najmniejszych podanych dawkach (7 lub 8 mg/kg/dzień) u części zwierząt wystąpiło uszkodzenie wątroby. Dawkę 7 mg/kg m.c. przyjęto więc za wartość ŁOA EL stanowiącą podstawą do wyprowadzenia wartości NDS pirydyny.
Pyridine, a cołorless liquid with a characteristic un pleasarit odor, has been categorized as a highly flam mable and harmful substance. It exerts harmful effects if inhaled, swalowed or absorbed through the skin. Pyridine is used as a solvent in paints, rubber, pharmaceuticals, polycarbonate resins and textile fabric impregnating agents. Its large quantities are applied as a precursor in the production of pyridine deriatives, piperidine, pesticides, phannaceuticals and other products. Occupational exposure to pyridine may occur during its production, further processing and distribution, as well as during the process of pyridine release, yield ing coal and tar breakdown products or pyridine containing products. In the second half of the 2Oth century pyridine air concentration in the occupational environment ranged from 0.002 to about 20 mg/m In Poland, according to the 2011 data of the Chief Sanitary Inspectorate, 31 workers in 2010 and 46 workers in 2011 were occupationally exposed to pyridine at concentrations from > 0.1 to 0.5 of the maximum admissible concentration (MAC) value, equal 5 mg/m No workers were exposed to pyridine at concentration exceeding the 0.5 MAC value. The human lethal dose of pyridine has been estimated at 0.5 - 5.0 mg/kg of body weight. In the reported cases of acute pyridine intoxication the following symptoms and signs were observed after ingestion: nausea, vertigo, abdominal pain and lung congestion and after inhalation: effects on the central nervous system (CNS) characterized by speech disorders and extensive cerebral cortex hypoxia. Chronic pyridine intoxication of workers employed in chemical plants, where its air concentrations reached 19 - 42 mg/m have also been reported. In those cases, such symptoms as headaches, vertigo, nervousness, insomnia, occasional nausea and vomiting were found. Based on the results of rather rare epidemiological studies no excess mortality among workers exposed to pyridine in three British plants was found in 1961—1983. The studies of acute toxic effect of pyridine carried out on laboratory animals (rats, mice, guinea pigs, rabbits and dogs) have evidenced that pyridine is a harmful (Xn) compound. Pyridine induces mild irritation effects on the rabbit skin, but it does not generate dermal allergy in guinea pigs. The studies of sub-chronic and chronic effects of pyridine, administered (per os or in drinking water) in different doses have revealed decreased body mass gain, liver and kidney damage and reproductive disorders in laboratory animals. Pyridine does not show mutagenic effects. Based on the results of studies on rats and mice, performed under the NTP program, the absence of clear-cut evidence that pyridine exerts carcinogenic effect on rats has been claimed, however, carcinogenic effect of pyridine on mice bas been evidenced. The International Agency for Research on cancer has categorized pyridine with respect to its potential carcinogenic risk to group 3 as not classifiable as to its car cinogenicity to humans. CNS depression observed iii humans after repeated exposure to pyridine, as well as the damage to liver and kidneys, the earliest symptoms of its toxic effect on rodents, are recognized as critical effects of tbis compound. The data on effects of chronic exposure of mice and rats to pyridine via ingestion served as grounds for estimating its MAC value. The values of no ob served adverse effect Ievel / the lowest observed adverse effect level (NOAEŁ/LOAEŁ) for sub chronic and chronic experiments on rodents fall within the range of > 7-50 mg/kg of body weight. The results of a two-year study on F344/N or Wistar rats administered pyridine in drinking water showed that the liver damage had occurred in a part of the study animals after the lowest doses (7 or 8 mg/kg/day). Therefore, a dose of 7 mg/kg of body weight was finally adopted as the LOAEŁ value, being the basis for setting the MAC value of pyridine. The LOAEŁ value of 7 mg/kg of body weight for pyridine corresponds with pyridine air concentration of 49 mg/m (15 ppm), providing that an adult person of 70 kg body weight inhales 10 m of the air during an 8-hour work shift. After applying coefficients of uncertainty (total value, 8), the MAC value for pyridine was estimated at 6.13 mg/m In the EU, the OEL value for pyridine bas not been set, however, maintaining its air concentration be bw 5 ppm (16 mg/m3 is recommended. The established pyridine MAC value of 6.13 mg/m3 not only meets this criterion but it is also close to the MAC value (5 mg/m for pyridine binding in Poland. The authors of the documentation have suggested to keep the MAC value for pyridine at 5 mg/m since according to the Chief Sanitary Inspectorate data for 2010-2011 in Po there were no workers exposed to pyridine at concentrations exceeding 0.5 of the MAC value (2.5 mg/m The compound was la belied with „Sk” indicating dermal absorption of the substance. There are no grounds for defining the maximum admissible short-term exposure level (STEL) for this compound. Therefore, it has been suggested to eliminate this value from the list of MAC values. The adherence to MAC value for pyridine of 5 mg/m should protect workers against harmful effects of pyridine on the CNS observed after exposure to its concentrations of 19—42 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 3 (77); 59-82
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pary rtęci i jej związki nieorganiczne
Mercury
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138010.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
rtęć
toksyczność
narażenie zawodowe
NDS
mercury
toxicity
occupational exposure
MAC
Opis:
Rtęć jest metalem, który w temperaturze pokojowej występuje w stanie ciekłym. W przyrodzie występuje głównie w postaci cynobru (siarczek rtęciowy, HgS) oraz jako rtęć rodzima w postaci kropel lub krystalicznego amalgamatu srebra. Światowa produkcja rtęci w połowie lat 70. XX w. osiągnęła poziom około 10 000 t rocznie. Z uwagi na problem zanieczyszczenia środowiska w końcu lat 80. zużycie rtęci gwałtownie zmniejszyło się. Niektóre państwa (USA) wstrzymały całkowicie wydobycie rtęci. W ostatnich latach światowa produkcja ustabilizowała się na poziomie około 2500 t rocznie. Rtęć jest stosowana przy produkcji baterii alkalicznych, lamp fluorescencyjnych, lamp rtęciowych w przemyśle chloroalkalicznym (elektrolityczne otrzymywanie chloru i wodorotlenku sodowego) oraz chemicznym (produkcja farb, katalizator w procesach chemicznych). Rtęć jest stosowana także w urządzeniach kontrolno-pomiarowych (termometry, zawory ciśnieniowe, przepływomierze), w preparatach dentystycznych (amalgamaty) oraz w niewielkich ilościach w laboratoriach. Narażenie zawodowe na pary rtęci ma miejsce głównie przy wydobywaniu i przerobie rudy cynobrowej, a także przy otrzymywaniu chloru i ługu metodami elektrolitycznymi, przy produkcji stopów metali, barwników, fungicydów oraz przy produkcji i obsłudze takich przyrządów wypełnionych rtęcią, jak np.: przepływomierze, różnego rodzaju aparatura pomiarowa, termometry, barometry, prostowniki. Narażeni na rtęć są również pracownicy laboratoriów, pracowni naukowych, gabinetów dentystycznych i zakładów fotograficznych. W zakładach przemysłu chloroalkalicznego w różnych państwach stężenie rtęci w powietrzu wynosiło < 10 ÷ 430 mg/m3. Obserwowane stężenia rtęci w moczu u pracowników tych zakładów wynosiły od 0 do około 750 mg/l. W warunkach przemysłowych narażenie dotyczy wyłącznie narażenia drogą inhalacyjną na pary rtęci. Inne nieorganiczne związki rtęci praktycznie nie stwarzają ryzyka przy narażeniu inhalacyjnym. Według danych stacji sanitarno-epidemiologicznych w 2007 r. na pary rtęci powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. 0,025 mg/m3 było narażonych 48 pracowników przy produkcji wyrobów chemicznych. Dla nieorganicznych związków rtęci przekroczeń wartości NDS (0,05 mg/m3) nie zanotowano. Narządem krytycznym u ludzi w zatruciach ostrych parami rtęci są płuca. W przypadku narażenia zawodowego postać ostra występuje rzadko. Po narażeniu na pary rtęci o dużym stężeniu obserwowano wiele skutków ze strony układu nerwowego, m.in.: drżenia, chwiejność emocjonalną, bezsenność, zaburzenia pamięci, polineuropatie, zaburzenia w funkcjach poznawczych i motorycznych oraz zaburzenia widzenia. W przewlekłym narażeniu ludzi na rtęć i jej związki nieorganiczne obserwowano głównie skutki neurotoksyczne i nefrotoksyczne. Po narażeniu szczurów na pary rtęci o stężeniu 27 mg/m3 przez 2 h padło 20 z 30 zwierząt. Wartość DL50 dla szczurów po dożołądkowym podaniu chlorku rtęci(II) wynosi 25,9 mg Hg/kg. Na tej podstawie, zgodnie z klasyfikacją UE, rtęć i jej związki nieorganiczne można zaliczyć do związków toksycznych. W eksperymentach podprzewlekłych i przewlekłych nieorganiczne związki rtęci wykazywały głównie działanie nefrotoksyczne, zależnie od wielkości dawki. W ocenie działania rakotwórczego IARC zaklasyfikowała rtęć metaliczną i jej związki nieorganiczne do grupy 3., czyli związków nieklasyfikowanych pod względem działania rakotwórczego dla ludzi. W licznych doniesieniach wykazano, że chlorek rtęci(II) działał mutagennie, natomiast pary rtęci nie wykazywały takiego działania. Mimo że w przypadku narażenia ludzi dane na temat wpływu rtęci metalicznej i jej nieorganicznych związków na rozrodczość są niejednoznaczne, to jej wpływ na zwierzęta jest udowodniony. Ponadto, z uwagi na fakt, że rtęć przechodzi przez barierę łożyska, istnieją zalecenia, aby u kobiet w wieku rozrodczym maksymalnie ograniczyć narażenie na rtęć i jej związki. O ile większość danych uzyskanych na podstawie wyników badań przeprowadzonych na zwierzętach dotyczy badań nieorganicznych związków rtęci, zwłaszcza chlorku rtęci(II), to dane z badań epidemiologicznych dotyczą głównie narażenia zawodowego na pary rtęci. Nadmierne narażenie zawodowe na rtęć metaliczną (pary) i jej związki powoduje wystąpienie objawów psychiatrycznych, behawioralnych i neurologicznych i wiąże się również z uszkodzeniem nerek. Tak więc, krytycznymi narządami w przypadku chronicznego narażenia na rtęć i jej związki nieorganiczne są ośrodkowy układ nerwowy i nerki. Ustalenie zatem wartości NDS powinno dotyczyć takiej wartości stężeń, poniżej której nie pojawią się subkliniczne zmiany. Najwcześniejszymi obserwowanymi zmianami są zaburzenia neurobehawioralne pojawiające się w wyniku narażenia na pary rtęci, dlatego proponowana wartość NDS wyprowadzona będzie dla par rtęci, a otrzymany normatyw powinien zabezpieczyć pracowników przed szkodliwymi skutkami działania zarówno par rtęci, jak i jej związków nieorganicznych. Za podstawę ustalenia wartości NDS dla par rtęci i jej związków nieorganicznych przyjęto wyniki badań epidemiologicznych dotyczących wczesnych neurotoksycznych skutków wywieranych przez rtęć. Większość wyników tych badań wykazała większą korelację stanu zdrowia badanych osób z wynikami monitoringu biologicznego (stężenia Hg w moczu i we krwi) niż monitoringu powietrza, dlatego proponowane normatywy higieniczne są wyprowadzane na podstawie wielkości stężenia rtęci w moczu. Większość autorów badań epidemiologicznych przyjmuje wartość 35 μg/g kreatyniny w moczu za stężenie progowe, powyżej którego zaczynają się ujawniać szkodliwe skutki ze strony ośrodkowego układu nerwowego i nerek. Dane z metaanaliz wskazują jednak na możliwość toksycznego działania rtęci na zachowania człowieka już po narażeniu na stężenia rtęci w moczu w zakresie 20 ÷ 30 μg/g kreatyniny. W ocenie autorów jednej z metaanaliz ludzie narażeni na rtęć uzyskują gorsze wyniki z niektórych testów neurobehawioralnych, porównywalne z wynikami osiąganymi przez ludzi o 5 ÷ 20 lat starszych. Na podstawie argumentacji uzasadnienia normatywów Unii Europejskiej oraz wyników meta analiz uważamy, że należy przyjąć poziom 30 μg Hg/g kreatyniny za poziom zabezpieczający przed wystąpieniem zaburzeń behawioralnych. Wartość ta jest proponowaną wartością dopuszczalnego stężenia w materiale biologicznym (DSB). Ekstrapolując wyniki monitoringu biologicznego na stężenie rtęci w powietrzu, zalecanemu stężeniu rtęci w moczu (30 μg/g kreatyniny) będzie odpowiadało stężenie rtęci w powietrzu wynoszące 0,02 mg/m3. Wartość tę proponujemy przyjąć za wartość NDS. Zaproponowane wartości normatywne (NDS – 0,020 mg/m3 i DSB – 30 μg/g kreatyniny) są zgodne z normatywami przyjętymi w Unii Europejskiej. Tak zaproponowane normatywy higieniczne powinny zabezpieczyć pracowników przed szkodliwymi skutkami działania zarówno par rtęci, jak i jej związków nieorganicznych. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) rtęci i jej związków.
Mercury (Hg) is the only common metal which is liquid at conventional room temperature. It is found in nature mostly as cinnabar (mercuric sulfide, Hg5) and also as native mercury in the form of drops or silver crystalline amalgam. In the mid 1970s world production of mercury was around 10 000 tonnes per year. By the end of the 1980s the use of mercury had rapidly decreased because of its adverse environmental effects. In recent years its annual world production has stabilized at the level of about 2500 tonnes. Mercury is used in the production of alkaline batteries and fluorescent lamps, mercuric lamps in the chlor-alkali (electrolytic production of chloride and sodium hydroxide) and chemical (paint manufacturing, catalysts in chemical processes) industries. It is also used in control and measurement devices (thermometers, manometers, pressure valves), in dental preparations (amalgam) and in laboratories. Mercury concentrations in chlor-alkali plants have recently ranged, depending on the country, from < 10 to 430 μg/m3, and concentrations in the urine of the employees of those plants ranged from 0 to 750 μg/l. In industrial plants, inhalation is the only way of workers’ exposure to Hg vapors. Inhalation exposure to other Hg inorganic compounds does not practically entail any risk. In the cases of acute Hg intoxication, the lungs are the most critical organ. In occupational exposure the acute form of contamination with this metal is rather rare. Nevertheless, it has been found that high concentrations of Hg vapors induce various harmful effects on the nervous system, e.g., tremor, emotional liability, insomnia, memory disturbances, polyneuropathies, disturbances of cognitive and motor functions and vision disorders, whereas chronic exposure to mercury and its inorganic compounds exerts neurotoxic and nephrotoxic effects. On the basis of the DL50 value for rats (25.7 mg/kg) and in accordance with the European Union (EU) classification, mercury and its inorganic compounds can be categorized as toxic compounds. On the basis of the available evidence, the International Agency for Research on Cancer categorized metallic mercury and its inorganic compounds as group 3, not classifiable as to its carcinogenity to humans. Numerous reports have indicated mutagenic effects of mercuric chloride (II), but not of Hg vapors. Although data on the effects of metallic mercury and its inorganic compounds on fertility in persons exposed to metallic mercury are contradictory, their adverse effects have been evidenced in animal studies. Bearing in mind that mercury penetrates the placental barrier it has been recommended to reduce exposure to mercury and its compounds to a minimum among women of child-bearing age. Most data based on animal studies apply to inorganic mercury compounds, especially to mercuric chloride, whereas data obtained from epidemiological studies mostly apply to occupational exposure to Hg vapors. Excessive occupational exposure to metallic mercury (vapors) and its compounds leads to psychiatric, behavioral and neurological symptoms and also to kidney damage. Thus, the neurological system and kidneys are major targets in chronic exposure to mercury and its inorganic compounds. Therefore, when setting MAC values, researchers should consider concentrations beyond which subclinical changes are not observed. Behavioral disturbances are the earliest consequences of exposure to Hg vapors, therefore the proposed MAC value should be set for Hg vapors and the obtained standard value should protect workers against harmful effects of both vapors of mercury and its inorganic compounds. The results of epidemiological studies on early mercury-induced neurotoxic effects have been taken as the basis for setting MAC values for Hg vapors and inorganic compounds. Most of those results showed that the health condition of the persons under study were more correlated with the results of biologic monitoring (urine and blood Hg concentrations) than with those of air monitoring. That is why the proposed hygiene standards have been deduced from Hg concentrations in urine. Most authors of epidemiological studies adopt the value of 35 μg/g creatinine in urine as the threshold concentration; at higher concentrations adverse effects on the peripheral nervous system and on the kidneys have been observed. Meta analyses of epidemiological studies reveal potential toxic effects of mercury on human behavior already after exposure to urinal Hg concentration within the range of 20 ÷ 30 μg/g creatinine. In our opinion, on the basis of the arguments used to justify the adoption of EU standards and the results of meta analyses, the level of 30 μg Hg/g creatinine in urine should be set as the level protecting against the development of behavioral disturbances. This value is proposed to be adopted as a biological limit value (BLV). Extrapolation from biological monitoring values to airborne exposure to mercury show that Hg concentration in the air at the level of 0.02 mg/m3 would correspond with the recommended Hg concentration in urine (30 μg/g creatinine). We propose to adopt this level as the MAC value. The proposed standard values (MAC, 0.020 mg/m3 and BLV 30 μg/g creatinine) are in agreement with norms adopted by the European Union. The proposed hygienic standards should protect workers against adverse effects of both mercury vapors and inorganic compounds. Setting the STEL concentration of mercury and its compounds is not warranted.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 3 (65); 85-149
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1-Bromopropan
1-Bromopropane
Autorzy:
Świdwińska-Gajewska, A
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/138153.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1-bromopropan
bromek propylu
NDS
1-bromopropane
propyl bromide
MAC
Opis:
1-Bromopropan (1-BP) jest bezbarwną lub lekko żółtawą cieczą o ostrym zapachu stosowaną jako rozpuszczalnik, głównie dla tłuszczów, wosków i żywic oraz jako środek czyszczący. 1-Bro-mopropan, ze względu na pewien wpływ na warstwę ozonową, znajduje się na liście proponowanych bezpiecznych zamienników chloro- i fluorowęglowodorów służących do czyszczenia po-wierzchni metalowych i specyficznych elementów elektronicznych. Szacuje się, że w Polsce kilka-set osób jest potencjalnie narażonych na ten związek w środowisku pracy. 1-Bromopropan działa neurotoksycznie, powodując zaburzenia w nerwach obwodowych i ośrodkowym układzie nerwowym, co potwierdzają wyniki badań na zwierzętach i obserwacje ludzi narażonych na działanie związku. Działa również hepatotoksycznie, powodując wakuolizację hepatocytów w strefie centralnej zrazików, a związek o dużych stężeniach działa także drażniąco na błony śluzowe nosa, gardła i oczu. Wykazano, że związek ten działa szkodliwie na rozrodczość, zarówno upośledzając płodność, jak i wpływając na rozwój płodu. 1-Bromopropan wykazywał działanie mutagenne u Salmonella Typhimurium szczepu TA1535 i TA100 zarówno z systemem aktywacji metabolicznej, jak i bez tego systemu, w układzie zamkniętym. Wynik negatywny uzyskano natomiast w teście na szczepach TA1537 i TA1538 i TA98, a ponadto także w teście mikrojądrowym przeprowadzonym na myszach Swiss i w teście na wykrywanie dominujących mutacji letalnych u szczurów Sprague-Dawley. Nie znaleziono danych na temat działania rakotwórczego 1-bromopropanu na ludzi i zwierzęta. W Polsce dotychczas nie ustalono wartości najwyższego dopuszczalnego stężenia (NDS) 1-bromo-propanu. W ACGIH w 2005 r. ustalono wartość TLV-TWA na poziomie 50 mg/m3. Wyliczenia wartości NDS 1-bromopropanu dokonano na podstawie działania hepatotoksycznego związku na zwierzęta. Przyjęto stężenie 1000 mg/m3 za wartość NOEL związku. Na podstawie przeprowadzonych obliczeń zaproponowano przyjęcie wartości NDS 1-bromopropanu na poziomie 42 mg/m3. Działanie drażniące 1-bromopropanu obserwowano dopiero po narażeniu na związek o średnim stężeniu wynoszącym 348 mg/m3, nie ma więc potrzeby ustalania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) 1-bromopropanu. Zaleca się oznakowanie substancji literami „Ft” – substancja działająca toksycznie na płód (Repro. Kat. 2; R60).
1-Bromopropane (1-BP) is a clear, colorless liquid. 1-BP is a substitute for solvents, used to clean metals and electronics, in adhesives and coatings applications, and in aerosol propellant applications. 1-Bromopropane is used to replace chlorinated solvents in vapor degreasing and cold metal cleaning operations. This substance is neurotoxic, hepatotoxic, and reproductive in developmental toxicity in animals. Human studies with 1-bromopropane have not been reported except a case study of 1-BP exposed worker who developed polyneuropathy. 1-BP was mutagenic with or without metabolic activation toward Salmonella typhimurium tester strains TA1535 and TA100 but it was not mutagenic towards strains TA1535, TA1538 and TA98. An increase in micronuclei was not observed in Swiss mice. 1-BP did not induce dominant lethal mutations in Sprague-Dawley rats. There are no data about carcinogenicity of this substance. Hepatotoxicity is used as critical effect to calculate maximum admissible concentration to 1-BP. The no-observed-effect (NOEL) for hepatotoxicity in the chronic rat study was 1000 mg/m3. MAC (NDS) of 42 mg/m3 was established. STEL (NDSCh) was not proposed because irritating properties of this substance were observed at concentration as high as 348 mg/m3. Ft notation which indicated that 1-BP is reproductive in developmental toxicity was signed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 2 (64); 5-29
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan
Nitroethane
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958174.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Stosowany jest jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako: rozpuszczalnik estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Według danych Stacji Sanitarno Epidemiologicznej w Bydgoszczy w 2007 r. nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach, które by przekraczały obowią-zujące wartości najwyższego dopuszczalnego stężenia (NDS) 30 mg/m3. Nitroetan może wchłaniać się do organizmu w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3 roku życia, które przypad-kowo wypiły zmywacz do sztucznych paznokci zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica i czasem wymioty, a poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Brak jest danych dotyczących zatruć przewlekłych nitroetanem u ludzi oraz danych epidemiologicznych. Na podstawie wyników badań toksyczności ostrej zaklasyfikowano nitroetan do związków szkodli-wych. Nie wykazano działania drażniącego związku na oczy i skórę oraz jego działania uczulającego.W badaniach podprzewlekłych (narażenie trwało 4 lub 90 dni) i przewlekłych (narażenie trwało 2 lata) przeprowadzonych na szczurach i myszach w zakresie stężeń 310 ÷ 12 400 mg/m3 nitroetanu stwier-dzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenie: wątroby, śledziony, ślinianek oraz małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Po przewlekłym narażeniu szczurów (2 lata) na nitroetan o stężeniu 620 mg/m3 (LOAEL) stwierdzono niewielkie zmniejszenie masy ciała zwierząt narażanych oraz brak zmian w wynikach badań hemato-logicznych, biochemicznych i histopatologicznych. Stosując wartość LOAEL równą 620 mg/m3, a także odpowiednie współczynniki niepewności, zapro-ponowano przyjęcie stężenia 75 mg/m3 nitroetanu za wartość NDS związku. Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu. Zapropo-nowano, ze względu na działanie methemoglobinotwórcze związku, przyjęcie dla nitroetanu wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHb we krwi, która została ustalona dla wszystkich substancji methemoglobinotwórczych.
Nitroethane is a colorless oily liquid with a mildly fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), as well as a solvent or a dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur in the processes of its production and processing. According to data provided by the Sanitary and Epidemiological Station in Bydgoszcz, Poland, as of 2007 there had been no cases in the Polish industryof workers’ exposure to this compound that would exceed the maximum admissible concentration (MAC) value of 30 mg/m3. Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. 170 The discussed cases of nitroethane acute poisoning applied to children under three years of age caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane. A few hours after ingestion cyanosis and sporadic vomiting were observed in children and the methemoglobin level reached 40–50%. There are no data on chronic nitroethane poisoning in humans or data obtained from epidemio-logical studies. On the basis of the results of acute toxicity studies, nitroethane has been classified as a hazardous com-pounds. However, there has been no evidence of its eye and dermal irritation or allergic effects. The studies of sub-chronic (exposure lasting from 4 to 90 days) and chronic (2-year) exposure to nitroethane, carried out on rats and mice (concentration range, 310–12 400 mg/m3), revealed the methemoglobinogenic effect, as well as minor damage to the liver, spleen, salivary gland and nasal turbinates caused by nitroethane. Niroethane has shown neither mutagenic nor carconogenic effects. There has been no evidence of its influence on fertility either. After chronic (2-year) exposure of rats to nitroethane at 620 mg/m3 (the lowest observed adverse effect level – LOAEL), there was a slight change in the body mass of exposed animals, but there were no anomalies in hematological, biochemical and histopathological examinations. By applying the LOAEL value of 620 mg/m3 and relevant coefficients of uncertainty, the value of 75 mg/m3 has been suggested to be adoptedas the MAC value for this compound. There are no grounds for setting the value of short-term exposure limit (STEL) for nitroethane. On account of its methemoglobinogenic effect, 2% Met-Hb has been suggested to beadopted as the value of the biological exposure index (BEI), a value already adopted for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 155-170
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akrylamid. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Acrylamide. Documentation of suggested occupational exposure limits (OELs)
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958185.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
akrylamid
toksyczność
narażenie zawodowe
NDS
acrylamide
toxicity
occupational exposure
MAC
Opis:
Akrylamid w temperaturze pokojowej występuje w postaci bezbarwnych kryształów lub płatków. Nie występuje w środowisku naturalnym, natomiast może się tworzyć w trakcie termicznej obróbki żywności (smażenie, pieczenie), występuje też w dymie papierosowym. Akrylamid jest sklasyfikowany jako substancja: toksyczna, stwarzająca poważne zagrożenie zdrowia w następstwie długotrwałego narażenia przez drogi oddechowe, w kontakcie ze skórą i po połknięciu. Akrylamid jest mutagenem kategorii 2. (1B) i związkiem rakotwórczym kategorii 2. (1B), działa szkodliwie na rozrodczość, a także drażniąco na oczy i skórę, może wywoływać reakcję uczuleniową skóry.Produkcja akrylamidu jest wielkotonażowa. Stosowany jest głównie do: syntezy poliakrylamidów stosowanych w procesach oczyszczania ścieków, produkcji papieru, przerobie rud, wytwarzaniu polimerów winylowych oraz jako szczeliwo podczas budowy zapór wodnych i tuneli. Żel poliakrylamidowy wykorzystuje się w procesie elektroforezy (PAGE) powszechnie stosowanej w wielu laboratoriach. Zawodowe narażenie na akrylamid może występować podczas: produkcji, dalszego przerobu i dystrybucji tego związku, a także stosowania związku w pracach budowlanych czy montażowych (np.: budowa tuneli, naprawa kanalizacji). Narażenie na akrylamid w Polsce występuje głównie w: zakładach chemicznych, farmaceutycznych oraz laboratoriach instytutów badawczych i uczelni wyższych.W Polsce w latach 2005-2010 ponad 2000 osób było narażonych na akrylamid (2525 osób w 2010 r.), z czego większość stanowiły kobiety. W latach 2011-2012 (wg danych GIS) nie było pracowników narażonych na stężenia akrylamidu w powietrzu, powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. powyżej 0,01 mg/m³. Akrylamid wykazuje działanie neurotoksyczne. Kliniczny obraz ostrego i przewlekłego zatrucia u ludzi jest podobny, a dominującymi są takie objawy neuropatii obwodowej, jak: utrata czucia, parestezje (drętwienie/mrowienie dłoni i stóp), osłabienie mięśniowe oraz osłabienie odruchów ścięgnistych. Mogą ponadto wystąpić drżenia rąk i chwiejny chód, zmniejszenie wrażliwości na światło i zdolność rozróżniania barw. Objawy neuropatii obwodowej obserwowano istotnie częściej u pracowników, gdy stężenia akrylamidu na stanowiskach pracy wynosiły powyżej 0,3 mg/m³. W badaniach monitoringu biologicznego (addukty akrylamid z hemoglobiną, AA-Hb) pracowników narażonych na akrylamid ustalono wartość NOAEL dla objawów drętwienia/mrowienia rąk/stóp na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu 0,1 mg/m³. U osób narażonych na akrylamid obserwowano także zapalenie skóry, objawiające się jej łuszczeniem, głównie na dłoniach. Na podstawie wyników badań toksyczności ostrej akrylamidu na zwierzętach wykazano, niezależnie od drogi narażenia, wystąpienie objawów neurotoksyczności. W dostępnym piśmiennictwie nie ma informacji o długoterminowych badaniach inhalacyjnych na zwierzętach. W badaniach podprzewlekłych i przewlekłych (po narażeniu drogą pokarmową lub dootrzewnową) obserwowano głównie neurotoksyczne działanie związku. Klinicznymi objawami narażenia zwierząt na akrylamid były zaburzenia koordynacji ruchowej i chodu oraz osłabienie kończyn tylnych prowadzące do paraliżu. U zwierząt w badaniach histopatologicznych stwierdzano głównie zwyrodnienie aksonów i komórek Schwanna w nerwach obwodowych i w rdzeniu kręgowym. Dla szczurów ustalono wartość NOAEL dla chronicznej neurotoksyczności na poziomie 0,5 mg/kg mc./ dzień. Akrylamid powodował zmiany patologiczne w narządach rozrodczych samców (zwyrodnienie nabłonka rozrodczego w jądrach i przewodach nasiennych, złuszczanie komórek rozrodczych w najądrzach oraz atrofię jąder). Standardowe testy na bakteriach nie wykazały zdolności akrylamidu do indukowania mutacji punktowych. Badanie mutacji genowych na komórkach ssaków w warunkach in vitro dały wynik niejednoznaczny. Niektórzy badacze przypuszczają, że aktywność akrylamidu może być związana z działaniem klastogennym (uszkodzenie chromosomu wyrażone jego złamaniem, co może prowadzić do zmiany organizacji struktury chromosomu wskutek nieprawidłowego połączenia się jego fragmentów w nową konfigurację). Akrylamid indukował aberracje chromosomowe, powodował poliploidalność i zaburzenia wrzeciona, co wskazuje na jego działanie aneuploidalne (obecność w komórce nieprawidłowej liczby chromosomów). Akrylamid powodował uszkodzenia DNA oraz nieplanową syntezę DNA, a także tworzył addukty z DNA oraz indukował wymianę chromatyd siostrzanych. Badania w warunkach in vivo dały dodatnie wyniki dla: aberracji chromosomowych, tworzenia mikrojąder i aneuploidii w szpiku kostnym, co sugeruje, że akrylamid jest bezpośrednio działającym mutagenem, ale prawdopodobnie powoduje skutek klastogenny, a nie mutacje genowe. Akrylamid wykazywał działanie mutagenne w komórkach rozrodczych samców. Wyniki dodatnie otrzymano dla skutków obejmujących: aberracje chromo-somowe, tworzenie mikrojąder, wymianę chromatyd siostrzanych, nieplanową syntezę DNA, dominujące mutacje letalne i dziedziczne translokacje. Za działanie mutagenne akrylamidu może być odpowiedzialny metabolit, glicydamid, który zarówno w badaniach przeprowadzonych w warunkach in vitro, jak in vivo powodował działanie mutagenne i genotoksyczne. Akrylamid działał rakotwórczo na szczury i myszy. U zwierząt w badaniach przewlekłych wykazano wzrost częstości występowania nowotworów u szczurów: tarczycy, jąder, gruczołów sutkowych, trzustki, serca, jamy ustnej i skóry, być może także ośrodkowego układu nerwowego (OUN) oraz u myszy: gruczołu Hardera, płuc, sutka, jajników oraz przedżołądka. Podobne działanie wykazywał także metabolit związku – glicydamid. Badania epidemiologiczne ludzi narażonych zawodowo, jak i środowiskowo (na akrylamid w diecie) nie dają jasnego obrazu zależności narażenia na związek a występowania nowotworów. W IARC zaklasyfikowano akrylamid do grupy 2A (substancja prawdopodobnie rakotwórcza dla ludzi), SCOEL zaliczył związek do grupy B rakotwórczości (genotoksyczne kancerogeny, dla których istniejące dane są niewystarczające do zastosowania modelu LNT). W badaniach na zwierzętach stwierdzono szkodliwy wpływ akrylamidu na płodność samców: zmniejszenie liczby plemników, zmiany morfologiczne nasienia, zaburzenia zachowań kopulacyjnych, dominujące mutacje letalne. U potomstwa samców narażonych na akrylamid stwierdzono zwiększenie resorpcji płodów i zmniejszenie liczebności miotów (skutek mutacji letalnych). Akrylamid nie wpływał na rozrodczość u samic. W badaniach toksyczności rozwojowej większość objawów u potomstwa obserwowano po dawkach akrylamidu powodujących toksyczność matczyną. Akrylamid dobrze wchłania się: drogą inhalacyjną, pokarmową (do 98% u szczurów, do 44% u myszy) i w mniejszym stopniu przez skórę; wiąże się specyficznie z krwinkami czerwonymi oraz spermatydami i przenika przez barierę łożyska. Akrylamid jest szybko metabolizowany przez sprzęganie z glutationem lub utlenianie przy udziale CYP2E1. Ten drugi szlak metaboliczny prowadzi do powstania epoksydowej pochodnej – glicydamidu (GA). Zarówno akrylamid, jak i GA wiążą się z hemoglobiną i/lub DNA. Akrylamid i jego metabolity ulegają wydalaniu z moczem. U ludzi po podaniu doustnym wydalało się z moczem w ciągu doby około 50% podanej dawki. Okres połowicznego wydalania oszacowano na około 3 h. Addukty hemoglobiny z akrylamidem i glicydamidem oraz metabolity obecne w moczu mogą służyć jako biomarkery narażenia na akrylamid. Za podstawę do zaproponowania wartości NDS akrylamidu przyjęto jego działanie neurotoksyczne na ludzi. U pracowników narażonych zawodowo na akrylamid o stężeniu przekraczającym 0,3 mg/m³ istotnie częściej występowało drętwienie dłoni i stóp niż w grupie pracowników narażonych na akrylamid o stężeniu poniżej 0,3 mg/m³. W celu ustalenia wartości NDS akrylamidu z wartości NOAEL 0,1 mg/m³ przyjęto jeden współczynnik niepewności związany z różnicami wrażliwości osobniczej u ludzi. Ilościowa ekstrapolacja wyników badań działania rakotwórczego związku u zwierząt na ludzi jest praktycznie niemożliwa, gdyż na powstawanie nowotworów obserwowanych u szczurów istotny wpływ mają czynniki specyficzne dla tego gatunku. Obliczona wartość NDS akrylamidu wynosi 0,05 mg/m³. Dla państw członkowskich UE istotne znaczenie mają wartości wiążące BOELV, a dla akrylamidu Komitet Doradczy ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy (ACSH) przyjął w 2012 r. propozycję wartości BOELV w zakresie stężeń 0,07 ÷ 0,1 mg/m³. W Niemczech dla ryzyka akceptowanego 4-10-4 zaproponowano wartość dopuszczalną dla akrylamidu na poziomie 0,07 mg/m³. Biorąc pod uwagę powyższe ustalenia, zaproponowano przyjęcie stężenia 0,07 mg/m³ za wartość NDS akrylamidu. Ze względu na wchłanianie akrylamidu przez skórę związek oznakowano literami “Sk”. W badaniach pracowników narażonych na akrylamid stwierdzono wyraźną zależność między poziomem adduktów akrylamidu z hemoglobiną (N-(2-karbamoiloetylo)-waliny, AA-Hb) a występowaniem objawów ze strony obwodowego układu nerwowego. Dla objawów drętwienia/mrowienia stóp lub nóg (najwcześniej występujących) ustalono wartość NOAEL na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu około 0,1 mg/m³. Jest to obowiązująca wartości NDS dla akrylamidu w Polsce. Do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym dla akrylamidu we krwi przyjęto stężenia adduktów akrylamidu z hemoglobiną. W Niemczech przyjęto dwie wartości: BLW (biologischer leitwert – dopuszczalna wartość biologiczna) na poziomie 550 pmol AA-Val/g globiny oraz BAR (biologischer arbeitsstoff-referenzwert – biologiczna wartość referencyjna) na poziomie 50 pmol AA-Val/g globiny. W SCOEL ustalono wartość wyjściową BGV dla niepalącej populacji generalnej na poziomie 80 pmol AA-Val/g globiny. Żadna z tych wartości nie była porównywana z wartościami dopuszczalnych stężeń akrylamidu w powietrzu na stanowiskach pracy, których zarówno w SCOEL, jak i w Niemczech dla akrylamidu nie ustalono.Ze względu na dużą zmienność stężeń adduktów akrylamidu z hemoglobiną w populacji nienarażonej zawodowo na akrylamid, a także fakt, że pomiar adduktów z hemoglobiną jest metodą inwazyjną, wymagającą ponadto wyspecjalizowanej aparatury, zrezygnowano z ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla akrylamidu.
Acrylamide (AA) is a chemical compound that occurs at room temperature in the form of colorless crystals or flakes. It is not found in the natural environment, but it can be produced in thermal food processes (frying, baking). It is also present in cigarette smoke. Acrylamide is categorized as a toxic substance that poses substantial health risk after long-term exposure via inhalation, ingestion or skin contact. It is a category 2 (IB) mutagen and category 2 (IB) carcinogen. AA is known to induce adverse effects on reproduction, eye irritation and allergic skin reactions. Acrylamide is produced in multitonnage quantities. It is mostly used to synthesize polyacrylamides applied in wastewater treatment, manufacturing paper, processing ore, manufacturing vinyl polymers; it is also used as a grouting agent in constructing dams and tunnels. Polyacrylamide gel is utilized in the process of electrophoresis (PAGE) commonly used in numerous laboratories.Occupational exposure to acrylamide may occur during the production, processing and distribution of this compound and also during its application in construction and assembly works (e.g., construction of tunnels, sewer grouting work). In Poland occupational exposure to acrylamide is observed in chemical and pharmaceutical plants as well as in laboratories of research institutes and tertiary education schools. Over 2000 workers (mostly women) were exposed to this compound in the years 2005-2010 (2525 workers in 2010). According to the data produced by the Chief Sanitary Inspectorate in 2011 and 2012 there were no workers exposed to acrylamide at levels exceeding maximum allowable concentration (MAC) in the air, namely over 0.01 mg/m3. Acrylamide is found to exert neurotoxic effects. Clinical symptoms of acute and chronic poisoning are similar in humans, and symptoms of peripheral neuropathy, such as loss of sensation, paresthesia (numbness/ tingling in hands and feet), reduced muscle tone and diminished tendon reflexes are most common. In addition, hand tremors and unsteady gait, diminished sensitivity to light and inability to distinguish colors can be ob-served. Peripheral neuropathy symptoms were significantly more frequent in workers exposed to A A concentrations exceeding 0.3 mg/m3. Based on the biological monitoring (acrylamide adducts with hemoglobin, AA-Hb) of AA-exposed w’orkers no-observed adverse effect level (NOAEL) for numbness/tingling in hands/ feet has been set at 0.51 nmol AA-Hb/g globin. This value corresponds to the air AA concentration of 0.1 mg/m3. In w'orkers exposed to this compound dermatitis manifested by skin peeling, mostly in the palm, is also observed. The results of animal studies on acute AA toxicity have revealed symptoms of neurotoxicity, regardless of the exposure route. In the available literature there is no information about long-term inhalation studies on animals. Subchronic and chronic studies (after intraperitoneal and ingestion exposure) showed mainly neurotoxic effect of this compound. Clinical symptoms of animal AA exposure were manifested by incoordination, unsteady gait and diminished strength of hind limbs leading to paralysis. Histopathological examinations of animals most frequently showed degenerated axons and Schwann cells in the spinal cord and peripheral nerves. The NOAEL value for chronic neurotoxicity in rats has been set at 0.5 mg/kg b.w./day. Acrylamide induced male reproductive pathology (degeneration of the germinal epithelium in testes and seminiferous tubules, exfoliation of germ cells in the epididymis and atrophy of testes). Standard bacteria testing show'ed lack of AA ability to induce point mutations. The in vitro study of gene mutations on mammal cells yielded controversial results. Some researchers suppose that the AA activity’ may be associated with the clastogenic effect (a broken chromosome, which may lead to chromosome reorganization due to incorrect coupling of its fragments into a new configuration). Acryla- rnide induced chromosome aberrations, polyploidy and spindle disorders, which indicates its aneuploidal effect (the incorrect number of chromosomes in the cell). Acrylamide was responsible for DNA damage, unscheduled DNA synthesis, production of DNA adducts and induction of sister chromatid exchange. In vivo studies yielded positive results for chromosome aberration, production of micronuclei and aneu- ploidy in bone marrow, which suggests that acrylamide is a mutagen characterized by direct action, however, it is most likely that it exerts the clastogenic effect, but not gene mutations. Acrylamide showed the mutagenic effect in male reproductive cells. Positive results wrere obtained for such effects as chromosome aberra-tions, production of micronuclei, sister chromatid exchange, unscheduled DNA synthesis, dominant lethal mutations and hereditary trans-locations. It is likely that metabolite glycidam- ide, which exerts mutagenic and genotoxic effects in both in vivo and in vitro studies, is re-sponsible for the mutagenic effect of acrylamide. Acrylamide was found to show a carcinogenic effect in rats and mice. Animal chronic studies revealed an increased incidence of cancers of thyroid, testes, mammary7 glands, pancreas, heart, oral cavity and skin and maybe also of the central nervous system (CNS) in rats as well as cancers of the Harderian gland, lungs, mammary glands, ovaries and foreestomach in mice. Glicydamide, AA metabolite, showed a similar effect. Epidemiological studies of people occupationally and environmentally (diet) exposed to acrylamide have not provided explicit evidence of the relationship between AA exposure and cancer risk. Acrylamide has been classified into group 2A (the agent probably carcinogenic to humans) by the International Agency for Research on Cancer and to group B (genotoxic carcinogen, for which the existence of a threshold cannot be sufficiently supported at present) by the Scientific Committee on Occupational Exposure Limit (SCOEL). Animal studies have evidenced an adverse effect of acrylamide on male reproduction/fertility, including a reduced number of sperm cells, morphological changes in sperm, altered sexual behavior, dominant lethal mutations. An increased fetal resorption and decreased litter size (resulting from lethal mutations) wrere observed in the progeny of males exposed to acrylamide. No effect on re-production was found in females. In the studies of developmental toxicity the majority of symptoms were observed after administration of AA doses responsible for inducing maternal toxicity. Acrylamide is well absorbed via inhalation and ingestion (up to 98% in rats and up to 44% in mice), less absorbed through the skin; specifically bound to red blood cells and spermatids and permeats through the placental barrier. Acrylamide is rapidly metabolized through conjuga¬tion to glutathione or CYP2El-mediated oxidation. The latter metabolic pathway leads to the production of glycidamide (GA), an epoxy derivative. Both acrylamide and GA can bind to hemoglobin and/or DNA. Acrylamide and its metabolites are excreted in the urine. In humans 50% of an orally administered dose w7as excreted in the urine in 24 h. Excretion half-time is esti-mated at approximately 3 h. Hemoglobin ad¬ducts of acrylamide, glycidamide and urinary metabolites can serve as biomarkers of acrylamide exposure. The neurotoxic AA effect on humans has been adopted as the basis for the proposed MAC value of this compound. In workers occupationally exposed to acrylamide at the concentration exceeding 0.3 mg/m3 numbness in palms and feet was observed more frequently than in those exposed to lower concentrations (below 0.3 mg/m3). To establish a MAC value of acrylamide from the value of NO- AEL 0.1 mg/m3, one uncertainty coefficient, related to individual differences in human sensitivity, has been adopted. The qualitative extrapolation of results obtained from carcinogenicity studies in laboratory7 animals to humans is practically impossible since the development of cancers observed in rats is significantly influenced by species-specific factors. The calculated MAC value for acrylamide is 0.05 mg/m3. It should be stressed that in the European Union the binding occupational exposure level value (BOELV) is most important. In 2012 the Advisor} Committee for Safety and Health at Work (ACSH) accepted a proposal on BOELV for acrylamide concentration within the range of 0.07 - 0.1 mg/m3. Also in Germany MAC for acrylamide was proposed at 0.07 for acceptable risk 4 - 1CH. Bearing in mind the aforesaid stipulations MAC of 0.07 mg/m3 for acrylamide has finally been proposed. On account of acrylamide ab-sorption through the skin the standard value for the compound is labeled "Sk". Studies of w7orkers occupationally exposed to acrylamide showed explicitly a relationship between the level of acrylamide adducts with hemoglobin (N-(2- -carbamoylethyl)-valine, AA-Hb) and the occurrence of symptoms in the peripheral nervous system. For numbness/tingling in feet or legs (the most commonly observed symptoms) the NOAEL value has been set at 0.51 nmol AA-Hb/g glo- bin. This value corresponds to AA concentration in the air of 0.1 mg/m3. This is a binding MAC value for acrylamide in Poland. Concentrations of acrylamide adducts with hemoglobin have been adopted to estimate admissible value in the biological material for acrylamide in blood. In Germany two values have been adopted, BLW (biologischer leitwert, biological limit value) of 550 pmol AA-Val/g globin and BAR (biologischer arbeitsstoff-referenzetwert, biological reference value) of 50 pmol AA-Val/g globin. SCOEL adopted an initial BGV (biological guidance value) for the non-smoking general population, which was set at 80 pmol AA-Val/g globin. None of these values was comparable with MAC values for acrylamide in workplace air; neither SCOEL nor Germany established such values. In view of great variations in the concentration of acrylamide adducts with hemoglobin in the population non-occupationally exposed to acrylamide as well as the fact measuring hemoglobin adducts involves an invasive procedure that requires highly specialized equipment, the establishment of BEI for acrylamide has been abandoned.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 2 (80); 5-71
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mangan i jego związki nieorganiczne – w przeliczeniu na Mn
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137231.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
mangan
narażenie zawodowe
toksyczność
NDS
manganese
occupational exposure
toxicity
MAC
Opis:
Mangan (Mn) jest metalem przejściowym, który występuje na: 0, II, III, IV, VI i VII stopniu utlenienia. Metal ten jest stosowany do produkcji stopów metali żelaznych i nieżelaznych, a jego związki mają wszechstronne zastosowanie. Narażenie zawodowe na mangan występuje: w górnictwie rud manganu, przy jego produkcji i jego stopów, podczas prac spawalniczych oraz podczas otrzymywania i stosowania jego związków. Wielkość narażania zawodowego na mangan na ogół nie przekracza 1 mg/m3 (frakcja wdychana pył całkowity) oraz 0,1 mg/m3 (frakcja respirabilna). Według danych Instytutu Medycyny Pracy w Łodzi z 1994 r. w Polsce było 3505 osób narażonych zawodowo na mangan o stężeniach przekraczających wartość najwyższego dopuszczalnego stężenia (NDS) wynoszącą 0,3 mg/m3, natomiast wg danych Głównej Inspekcji Sanitarnej z 2007 r. na mangan i jego związki nieorganiczne (w przeliczeniu na Mn) było narażonych 1011 pracowników. W przewlekłym zatruciu manganem u ludzi przeważają zaburzenia ze strony układu nerwowego i oddechowego. Po stosunkowo małych wielkościach narażenia zawodowego u pracowników obserwowano subkliniczne zmiany neurobehawioralne. U zwierząt laboratoryjnych w warunkach narażenia powtarzanego na mangan obserwowano zmiany w metabolizmie neuroprzekaźników oraz zaburzenia neuroczynnościowe. Mutagenne działanie manganu było słabo zaznaczone. Mangan nnie jest klasyfikowany jako czynnik rakotwórczy. Brak jest również jednoznacznych dowodów na jego wpływ na rozrodczość. Wydaje się, że ze względu na możliwą kumulację skutków działania manganu na ośrodkowy układ nerwowy (OUN) bardziej wartościowe do ustalenia wartości NDS są wyniki badań dotyczące narażenia skumulowanego. Na podstawie wyników pracy Roelsa i in. wykazano, że skumulowane narażenie na mangan o stężeniu 3575 mg/m3 razy lata pracy w narażeniu (frakcja wdychalna) i stężenie 0,73 mg/m3 razy lata pracy w narażeniu (frakcja respirabilna) powodowało występowanie wczesnych objawów działania na OUN u 5% populacji. Jeśli przyjmiemy 20 lat pracy w narażeniu na mangan, to stężenia manganu w powietrzu środowiska pracy wyniosą odpowiednio 0,178 (frakcja wdychalna) oraz 0,036 mg/m3 (frakcja respirabilna). W badaniu Myersa i in. w grupie 489 górników narażonych na mangan w postaci pyłu całkowitego o stężeniu 0,21 mg/m3 (średnia arytmetyczna) przez średni okres 10,8 lat pracy nie obserwowano subklinicznych zaburzeń neurobehawioralnych związanych z narażeniem. Na podstawie wyników wymienionych prac wykazano, że można zaproponować przyjęcie stężenia 0,2 mg/m3 za dopuszczalną wartość stężenie manganu zawartego we wdychalnej frakcji pyłu. Ponieważ mangan we frakcji respirabilnej stanowi około 25% manganu obecnego w pyle całkowitym, dlatego proponuje się ustalenie wartości NDS dla tej frakcji jako ¼ obliczonej wcześniej wartości NDS, tj. 0,05 mg/m3. Proponuje się przyjęcie wartości NDS dla manganu na poziomach 0,2 mg/m3 i 0,05 mg/m3 odpowiednio dla frakcji wdychalnej i frakcji respirabilnej. Proponowane wartości powinny chronić pracowników przed subklinicznymi zaburzeniami neurobehawioralnymi wywołanymi narażeniem na mangan. Nie znaleziono merytorycznych podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) manganu oraz jego dopuszczalnego stężenia w materiale biologicznym (DSB).
Manganese (Mn) is a transition metal, which occurs in several oxidation states (0, II, III, IV, VI and VII) and forms a range of inorganic compounds. Manganese is a very hard, brittle metal, which is used in the production of ferrous and non-ferrous metal alloys, including those essential to steel making. This metal increases the strength of steel alloys. Iron and steel production accounts for 85 ÷ 95% of the manganese market. Its compounds have comprehensive applications. In industrial conditions, there is occupational exposure especially in mining, metal smelting, steel production, battery manufacture, welding, agricultural production and use, and in pigment, paint and glass making. Workers can be exposed to dust and fumes of manganese-containing compounds in a range of particle sizes where the ratio of inhalable to respirable fractions varies within and between industries. Manganese is an essential element; it is involved in bone formation and amino acid, carbohydrate and cholesterol metabolism. It is a component of several enzymes and it activates others. It is estimated that in Poland in 1994 about 3500 workers were exposed to manganese at levels above the maximum admissible concentration (MAC) of 0.3 mg/m3. However, according to data provided by the Chief Sanitary Inspectorate, about 1000 persons were exposed to manganese and its inorganic compounds in 2007. In persons chronically exposed to manganese and its compounds via inhalation disorders of both the central nervous and the respiratory system predominate. Subclinical neurobehavioral changes have been observed in workers occupationally exposed to relatively low levels of this metal. There have been changes in neurotransmitters metabolism and neurofunctional disorders in laboratory animals repeatedly exposed to manganese. The mutagenicity of this metal was weakly marked. Manganese is not classified as a chemical carcinogen. On the basis of the results of epidemiological examinations the MAC values for manganese and its inorganic compounds were established at 0.2 mg/m3 and 0.05 mg/m3 for inhalable and respirable fractions, respectively. No STEL (15 mins) and BEI values have been proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 1 (71); 27-58
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Styren
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137477.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
styren
narażenie zawodowe
toksyczność
NDS
styrene
occupational exposure
toxicity
MAC
Opis:
Styren łatwopalna ciecz o przenikliwym i słodkim zapachu jest substancją wielkotonażową wykorzystywaną do produkcji: żywicy butadienowo styrenowej i żywic kopolimerowych z akrylonitrylem, tworzyw sztucznych wzmocnionych włóknem szklanym stosowanych w szkutnictwie oraz powłok ochronnych. Styren stosuje się także jako rozpuszczalnik i półprodukt chemiczny. Największe zawodowe narażenie na styren występuje podczas prac natryskowych oraz podczas produkcji: łodzi, pojazdów i kontenerów. Według danych Głównej Inspekcji Sanitarnej w 2007 r. w Polsce były zatrudnione 323 osoby narażone na styren o stężeniu powyżej 50 mg/m3, czyli wartości najwyższego dopuszczalnego stężenia (NDS). Osoby te pracowały przy produkcji: wyrobów gumowych i wyrobów z tworzyw sztucznych (186 osób), pozostałego sprzętu transportowego (55 osób), wyrobów niemetalicznych (51 osób) i sprzętu transportowego, a także przy produkcji niesklasyfikowanej gdzie indziej oraz w budownictwie (31 osób). W 2010 r. liczba osób zawodowo narażonych na styren powyżej wartości NDS wzrosła do 480, w tym: 203 osoby pracowały przy produkcji wyrobów gumowych i tworzyw sztucznych, 115 osób przy produkcji pojazdów samochodowych, 143 osoby przy produkcji pozostałego sprzętu transportowego, 5 osób było zatrudnionych przy produkcji włókien tekstylnych, 1 osoba przy produkcji chemikaliów, 8 osób przy produkcji gotowych wyrobów metalowych, 3 osoby w trakcie wykonywania specjalistycznych robót budowlanych oraz 2 osoby zatrudnione w handlu hurtowym (GIS 2010). W latach 2001-2010 w związku z narażeniem na styren zarejestrowano sześć przypadków chorób zawodowych: dwa przypadki zatrucia, trzy – choroby skóry oraz jeden przypadek przewlekłego zanikowego alergicznego nieżytu nosa, gardła lub krtani wywołany działaniem drażniącym styrenu. Działanie toksyczne styrenu u ludzi manifestuje się podrażnieniem: oczu, śluzówki nosa i gardła, a także zaburzeniami ze strony ośrodkowego układu nerwowego (OUN) w postaci zmian neurobehawioralnych oraz upośledzenia funkcji narządu wzroku i narządu słuchu. U pracowników przewlekle narażonych na styren opisano również zmiany: hematologiczne, czynnościowe wątroby, endokrynne i immunologiczne. Styren nie spełnia kryteriów klasyfikacji ustalonych dla toksyczności ostrej po podaniu drogą pokarmową, inhalacyjną lub dermalną w Unii Europejskiej. Styren wykazuje działanie genotoksyczne, wyrażone zmianami klastogennymi i aberracjami chromosomowymi w wyniku tworzenia adduktów z DNA przez jego tlenek. Według IARC nie ma wystarczającego dowodu na rakotwórcze działanie styrenu na ludzi, natomiast istnieje ograniczony dowód takiego działania u zwierząt (grupa 2B). Nie wykazano również embriotoksycznego, fetotoksycznego i teratogennego działania styrenu, natomiast istnieje możliwość szkodliwego działania styrenu na gonady męskie i na rozwój potomstwa w okresie postnatalnym. Podstawą do obliczenia wartości NDS dla styrenu były wyniki badań epidemiologicznych. Za skutki krytyczne przyjęto drażniące działanie tego związku oraz zaburzenia ze strony OUN. Zaproponowano pozostawienie obowiązującej w Polsce wartości NDS styrenu na poziomie 50 mg/m3 oraz zmniejszenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) do 100 mg/m3. Ponadto zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla sumy stężeń kwasu migdałowego (MA) i kwasu fenyloglioksalowego (PGA) w moczu pobranym pod koniec zmiany roboczej na poziomie 235 mg/g kreatyniny. Normatyw oznakowano literą „I” informującą, że jest to substancja o działaniu drażniącym.
Styrene monomer is a colorless to yellow oily liquid with a sweet, sharp odor at concentrations on the order of 426 mg/m3. Styrene has been produced by catalytic dehydrogenation of ethyl benzene. This compound is manufactured on a large scale. It has been widely used in the manufacture of polystyrene plastics, protective coatings, styrenated polyesters, copolymer resins with acrylonitrile and butadiene, and as a chemical intermediate. In Poland in 2010 the number of workers exposed to styrene at concentration above MAC value (50 mg/m3) was 480. In 2001 to 2010 six cases of professional diseases caused by styrene was noted. Results of animal studies revealed that styrene is a chemical of relatively low toxicity. In humans occupationally exposed to styrene an irritating effect to the eyes, both nose and throat mucosa, and central nervous system (CNS) disturbances (neurobehavioral, impairment of colour vision and hearing) were observed. Also, this chemical was caused hematological, hepatotoxic, andocrine, and immunological changes. Styrene exerts genotoxic effects causing an increase of single-strand breaks of DNA and chromosomal aberrations. There is inadequate evidence in humans and limited evidence in experimental animals for the carcinogenicity of styrene. The International Agency for Research on Cancer (IARC) has classified styrene to Group 2B. Styrene has shown neither embryotoxic, fetotoxic, and teratogenec effects. The recommended maximum admissible concentration (MAC) for styrene of 50 mg/m3 is based on the irritating effect and CNS disturbances in workers professionally exposed to this chemical. STEL value at 100 mg/m3, and “I” (irritating) notation has been proposed. Moreover, BEI value for sum of mandelic acid and phenylglyoxylic acid at level of 235 mg/g creatinine is recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 101-135
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Izofluran
Isoflurane
Autorzy:
Soćko, R.
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/137604.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
izofluran
wartości NDS
narażenie zawodowe
isoflurane
MAC
OEL
occupational exposure
Opis:
Izofluran w temperaturze pokojowej jest bezbarwną, przezroczystą, lotną cieczą o delikatnym zapachu eteru. Jest anestetykiem wziewnym z grupy węglowodorów halogenowych wprowadzonym do praktyki klinicznej w 1981 r. Uważa się, że w porównaniu z innymi anestetykami jest on obciążony mniejszą liczbą działań ubocznych niż enfluran i większym od halotanu współczynnikiem terapeutycznym, a wśród halogenowych anestetyków izofluran jest uważany za związek o dużym marginesie bezpieczeństwa. Wielkość narażenia na izofluran w salach operacyjnych zależy od wyposażenia sal w kontrolowaną klimatyzację i wentylację, a także od metod podawania anestetyku. Średnie stężenie izofluranu dla 8-godzinnego czasu zmiany roboczej wynosiło w salach operacyjnych w województwie łódzkim około 2,7 mg/m3, a maksymalne stężenie – około 20,7 mg/m3. Skutki niepożądanego działania izofluranu obserwowano u ludzi poddawanych narkozie tym anestetykiem. Dotyczą one przede wszystkim narażenia na ten związek o bardzo dużych stężeniach, tzn. anestetycznych lub subanestetycznych. Izofluran powoduje u ludzi zależną od wielkości stężenia depresję ośrodkowego układu nerwowego, wykazuje działanie na układ sercowo-naczyniowy i oddechowy, a ponadto działa drażniąco na oczy, błony śluzowe dróg oddechowych i skórę. Wsród personelu medycznego bloków operacyjnych narażonego na działanie różnych anestetyków stwierdzono takie subiektywne objawy narażenia na izofluran, jak: odczucie zmęczenia, bóle głowy i rozdrażnienie. W dostępnym piśmiennictwie nie znaleziono informacji dotyczacych skutków zawodowego narażenia na izofluran. W dostępnym piśmiennictwie nie znaleziono także danych na temat działania rakotwórczego, embriotoksycznego oraz wpływu na rozrodczość izofluranu. Na podstawie wyników badań doświadczalnych nie stwierdzono również działania teratogennego i mutagennego izofluranu. Główną drogą usuwania izofluranu z organizmu wchłoniętego przez drogi oddechowe są płuca. Tą drogą jest on wydalany w postaci niezmienionej, a tylko niewielka jego część ulega u ludzi biotransformacji. W dostępnym piśmiennictwie nie znaleziono danych pozwalających na ocenę zależności skutków działania izofluranu od wielkości narażenia wśród personelu medycznego. Wartość normatywu higienicznego izofluranu w poszczególnych państwach mieści się w przedziale 15,2 ÷ 375 mg/m3 (2 ÷ 50 ppm). Przyjmując, że układem krytycznym działania izofluranu jest OUN i zakładając taki sam mechanizm działania jak w wypadku innych związków z tej grupy, zaproponowano przyjęcie dla izofuranu wartości najwyższego dopuszczalnego stężenia (NDS) równej 32 mg/m3 (4 ppm). Proponuje się nieustalanie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) izofluranu, ponieważ związek ten o stężeniach nawet 1000 razy większych od zaproponowanej wartości NDS nie powodował podrażnienia błon śluzowych dróg oddechowych.
Isoflurane is polyfluorinated anaesthetic used during surgical treatment in adult and child patients. It is usually applied as a mixture with oxygen or dinitrogen monoxide. An assessment of health risk from exposure to this inhalant anaesthetic poses a serious problem for employers, mostly due to the fact that this compound belongs to the category for which no Maximum Admissible Concentration (MAC) has been established. Consequently, there is no obligation to measure its air concentration in the workplace. However, the employer is responsible for determining whether or not a given hazardous agent is present in the working environment. The setting of a MAC value for isoflurane has recently been the objective of the activity of the Expert Group for Chemical Agents that has proposed accepting the MAC values of 32 mg/m3 (= 4 ppm) for isoflurane in assessment of workplace hazards. This exposure level is to protect surgical staff from adverse neurological, cardiovascular, respiratory and irritant effects.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 83-100
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Nitroethane : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Sapota, A.
Kilanowicz, A.
Skrzypińska-Gawrysiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/137842.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Jest stosowany jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako rozpuszczalnik: estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Nie ma danych dotyczących stężeń nitroetanu w powietrzu w warunkach narażenia zawodowego. W latach 2010-2015 nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach przekraczających obowiązującą wartość NDS – 75 mg/m³ (taka wartość NDS obowiązuje od 2010 r.). Nitroetan może wchłaniać się w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3. roku życia, które przypadkowo wypiły zmywacz do sztucznych paznokci, zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica, czasem wymioty. Poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Nie ma danych ani o zatruciach przewlekłych ludzi nitroetanem, ani danych epidemiologicznych. Na podstawie wyników toksyczności ostrej zaklasyfikowano nitroetan do związków szkodliwych. Nie wykazano działania drażniącego związku na oczy i skórę ani jego działania uczulającego. Na podstawie wyników badań podprzewlekłych (4 i 90 dni) i przewlekłych (2 lata), którym poddano szczury i myszy narażane na nitroetan w zakresie stężeń 310 ÷ 12 400 mg/m³, stwierdzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenia: wątroby, śledziony, ślinianek i małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Najmniejsze stężenie nitroetanu, podczas którego w badaniach przewlekłych prowadzonych na szczurach stwierdzano skutki działania tego związku (zmniejszenie masy ciała i subtelne zmiany w parametrach biochemicznych u samic), wynosiło 525 mg/m3 (LOAEL). Wychodząc z wartości LOAEL oraz stosując odpowiednie współczynniki niepewności, zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) nitroetanu równej 62 mg/m³. Wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu zaproponowano, zgodnie z przyjętą metodologią ustalania wartości chwilowej dla związków o działaniu drażniącym, na poziomie trzykrotnej wartości NDS, tj. 186 mg/m³, co zapobiegnie skutkom podrażnienia sensorycznego u ludzi. Ze względu na działanie methemoglobinotwórcze nitroetanu, zaproponowano także przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% methemoglobiny (MetHb) we krwi, jak dla wszystkich substancji methemoglobinotwórczych. W Scientific Committee on Occupational Exposure Limits (SCOEL) wartość dopuszczalnego poziomu narażenia zawodowego dla nitroetanu TWA (8 h) zaproponowano na poziomie 62 mg/m³ (20 ppm), wartość krótkoterminową STEL (15 min) na poziomie 312 mg/m³ (100 ppm) oraz notację „skóra”. Wartości OEL i STEL zaproponowane w SCOEL dla nitroetanu podlegały konsultacjom publicznym, prze-prowadzonym w 2011 r. przez punkty kontaktowe, podczas których Polska nie zgłosiła zastrzeżeń do tych propozycji. Wartości zaproponowane dla nitroetanu przez SCOEL zostały przyjęte przez Komitet Doradczy ds. Bezpieczeństwa i Ochrony Zdrowia w Miejscu Pracy UE (ACSH) i umieszczone w projekcie dyrektywy ustalającej IV wykaz wskaźnikowych dopuszczalnych wartości narażenia zawodowego.
Nitroethane is a colorless oily liquid with a mild fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), and as a solvent or dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur during the process of its production and processing. There are no data on air concentrations of nitroethane in occupational exposure. In 2010–2015, workers in Poland were not exposed to nitroethane concentrations exceeding the maximum allowable value – 75 mg/m3 (the limit value valid since 2010). Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. The discussed cases of nitroethane acute poisoning caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane concerned children under three years. Few hours after ingestion, cyanosis and sporadic vomiting were observed in children. The methemoglobin level reached 40÷50%. Neither data on chronic nitroethane poisoning in humans nor data obtained from epidemiological studies are available. On the basis of the results of acute toxicity studies nitroethane has been categorized in the group of hazardous compounds. However, eye and dermal irritation or allergic effects have not been evidenced. The studies of sub-chronic (4 and 90 days) and chronic (2 years) exposure to nitroethane performed on rats and mice (concentration range 310 ÷ 12 400 mg/m3 ) revealed the methemoglobinogenic effect of this compound and a minor damage to liver, spleen, salivary gland and nasal turbinates. Niroethane has shown neither mutagenic nor carcinogenic effects. Its influence on fertility has not been evidenced either. After chronic exposure (2 years) of rats to nitroethane at concentration of 525 mg/m3 (the lowest observed adverse effect level – LOAEL), a slight change in a body mass of exposed female animals and subtle changes in biochemical parameters were observed, but there were no anomalies in hematological and histopathological examinations. The value of 62 mg/m3 has been suggested to be adopted as the MAC value for nitroethane after applying the LOAEL value of 525 mg/m3 and relevant coefficients of uncertainty. The STEL value for nitroethane was proposed according to the methodology for determining short term exposure level value for irritating substances as three times MAC value (186 mg/m3) to prevent the effects of sensory irritations in humans. Because of its methemoglobinogenic effect, 2% Met-Hb has been suggested to be adopted as the value of biological exposure index (BEI), like the value already adopted for all methemoglobinogenic substances. The Scientific Committee on Occupational Exposure Limits (SCOEL) proposed the timeweighted average (TWA) for nitroethane (8 h) as 62 mg/m3 (20 ppm), short-term exposure limit (STEL, 15 min) as 312 mg/m3 (100 ppm) and “skin” notation. Proposed OEL and STEL values for nitroethane were subjected to public consultation, conducted in 2011 by contact points, during which Poland did not raise any objections to the proposals. The proposed values for nitroethane by SCOEL has been adopted by the Advisory Committee on Safety and Health at Work UE (ACSH) and included in the draft directive establishing the IV list of indicative occupational exposure limit values.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 1 (91); 97-113
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hydrochinon
Hydroquinone
Autorzy:
Sitarek, K.
Powiązania:
https://bibliotekanauki.pl/articles/138104.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
hydrochinon
NDS
NDSCh
narażenie zawodowe
hydroquinone
MAC
OEL
occupational exposure
Opis:
Hydrochinon w temperaturze pokojowej jest ciałem stałym występującym w postaci białych, podłużnych kryształów. Jest stosowany jako czynnik redukujący, składnik wywoływaczy fotograficznych, przeciwutleniacz farb, lakierów, olejów, tworzyw sztucznych, gumy, a także jako czynnik wybielający w przemyśle kosmetycznym. U pracowników narażonych na pary chinonu i pyłu hydrochinonu obserwowano: podrażnienie oczu, nadwrażliwość na światło, łzawienie, uszkodzenie i zmętnienie rogówki. Podrażnienie oczu wskutek narażenia na hydrochinon występowało już po narażeniu na związek o stężeniu 2,25 mg/m3 i wzrastało wraz z wydłużeniem czasu narażenia oraz wzrostem stężenia tej substancji w powietrzu, doprowadzając do zapalenia i przebarwienia rogówki i spojówek. Medialne dawki śmiertelne hydrochinonu wynoszą 720 ÷ 1300 mg/kg masy ciała dla szczurów, 340 ÷ 400 mg/kg m.c. dla myszy, 550 mg/kg m.c. dla świnek oraz 70 mg/kg m.c. dla kotów. Po 13 tygodniach narażenia szczurów na hydrochinon per os w dawkach dziennych: 0; 25; 50; 100; 200 lub 400 mg/kg m. c. stwierdzono u zwierząt – otrzymujących dawkę 400 mg/kg i u niektórych z grupy otrzymującej dawkę 200 mg/kg – drżenie ciała i drgawki. Dawka hydrochinonu na poziomie 400 mg/kg m.c. była letalna dla szczurów. Szczury otrzymujące związek w dawce 200 mg/kg m.c. miały mniejszy przyrost masy ciała, a w badaniach patomorfologicznych stwierdzono u nich stany zapalne i/lub hiperplazję komórek nabłonkowych przedżołądka oraz zmiany histopatologiczne w nerkach U myszy, które narażano per os na hydrochinon w dawkach 25 ÷ 400 mg/kg m.c./dzień przez 13 tygodni, padnięcia zwierząt w grupie otrzymującej dawkę 400 mg/kg m.c. wynosiły 80%, a w grupie otrzymującej dawkę 200 mg/kg m.c. – 10%. U większości zwierząt narażanych na największe dawki związku obserwowano drżenie ciała. Tylko u zwierząt otrzymujących hydrochinon w dawce 400 mg/kg m.c. drżenia przechodziły w drgawki. Padnięcia zwierząt z grup otrzymujących związek w dawkach: 400; 200 lub 100 mg/kg m.c. poprzedzał stan śpiączki. U samców oraz u samic z grup otrzymujących hydrochinon w dawkach: 100 lub 400 mg/kg m.c. stwierdzono większą względną masę wątroby. W badaniach patomorfologicznych ujawniono: owrzodzenie i hyperplazję nabłonka przedżołądka u trzech na dziesięć narażanych samców i u dwóch na dziesięć narażanych samic z grupy otrzymującej dawkę 400 mg/kg m.c. hydrochinonu i u jednej na dziesięć narażanych samic z grupy otrzymującej dawkę 200 mg/kg m.c. Hydrochinon nie był czynnikiem mutagennym dla bakterii Salmonella typhimurium, ale powodował skutki genotoksyczne (indukcję mikrojąder i uszkodzenia DNA). W badaniach działania rakotwórczego hydrochinonu ujawniono pewne dowody świadczące o jego rakotwórczości dla szczurów i myszy (gruczolaki komórek kanalików nerkowych, białaczki monocytarne u szczurów oraz gruczolaki i raki wątrobowo-komórkowe u myszy). Nie ma dowodów działania rakotwórczego hydrochinonu u ludzi. W IARC zaliczono hydrochinon do grupy 3., tj. czynników nieklasyfikowanych pod względem rakotwórczości dla ludzi. Stwierdzono, że związek nie powodował istotnych zaburzeń rozwoju prenatalnego i płodności zwierząt doświadczalnych. Hydrochinon ulega wchłanianiu w przewodzie pokarmowym, a jest wydalany z moczem w postaci siarczanów i glukuronianów. W większości państw przyjęto, że wartość najwyższego dopuszczalnego stężenia (NDS) hydrochinonu w powietrzu środowiska pracy wynosi 2 mg/m3. Obowiązująca w Polsce wartość NDS hydrochinonu wynosi 2 mg/m3 (1982 r.), natomiast wartość NDSCh – 4 mg/m3 (1985 r.). Wartości te zostały przyjęte w latach 80. bez opracowania dokumentacji dopuszczalnych wielkości narażenia zawodowego. W Unii Europejskiej nie ustalono normatywów higienicznych dla hydrochinonu. Za podstawę wyliczenia wartości NDS hydrochinonu przyjęto działanie drażniące związku na oczy. Z obserwacji działania drażniącego na oczy człowieka wynika, że hydrochinon o stężeniu 2,25 mg/m3 w powietrzu środowiska pracy może powodować podrażnienie oczu. Krótkotrwałe narażenie na hydrochinon o stężeniu 13,5 mg/m3 oraz długotrwałe narażenie na związek o stężeniach 0,05 - 14,4 mg/m3 nasila jego działanie drażniące, prowadząc do zmian zapalnych i przebarwień rogówki oraz spojówek. Stężenie 2,25 mg/m3 hydrochinonu przyjęto za wartość LOAEL. Po zastosowaniu odpowiednich współczynników niepewności zaproponowano przyjęcie stężenia 1 mg/m3 hydrochinonu za wartość NDS i stężenia 2 mg/m3 za wartość NDSCh oraz oznaczanie normatywu literą „A” informującą, że jest to substancja o działaniu uczulającym. Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) hydrochinonu.
Hydroquinone is a white crystalline substance. It has been used in photography as a developer, and a raw material in the rubber industry, a stabilizer in oils, paints and as a chemical intermediate in dyes. LD50 for laboratory animals ranges from 70 to 550 mg/kg. Hydroquinone is negative in mutagenicity tests but it is a clastogenic agent. This chemical is absorbed from the gastrointestinal tract and is eliminated as a sulfate and glucuronide conjugates in the urine. Acute human exposure causes irritation, photophobia, lacrimation and corneal ulceration. The symptoms of acute severe poisoning include tinnitus, nausea, dizziness, increased respiration, pallor, headache and dyspnoea. The Expert Group recommended a MAC of 1.0 mg/m3 and MAC-STEL 2.0 mg/m3 and the “A” – allergic substance – notation.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 2 (56); 107-128
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies