Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "NDS" wg kryterium: Wszystkie pola


Tytuł:
Styren
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137477.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
styren
narażenie zawodowe
toksyczność
NDS
styrene
occupational exposure
toxicity
MAC
Opis:
Styren łatwopalna ciecz o przenikliwym i słodkim zapachu jest substancją wielkotonażową wykorzystywaną do produkcji: żywicy butadienowo styrenowej i żywic kopolimerowych z akrylonitrylem, tworzyw sztucznych wzmocnionych włóknem szklanym stosowanych w szkutnictwie oraz powłok ochronnych. Styren stosuje się także jako rozpuszczalnik i półprodukt chemiczny. Największe zawodowe narażenie na styren występuje podczas prac natryskowych oraz podczas produkcji: łodzi, pojazdów i kontenerów. Według danych Głównej Inspekcji Sanitarnej w 2007 r. w Polsce były zatrudnione 323 osoby narażone na styren o stężeniu powyżej 50 mg/m3, czyli wartości najwyższego dopuszczalnego stężenia (NDS). Osoby te pracowały przy produkcji: wyrobów gumowych i wyrobów z tworzyw sztucznych (186 osób), pozostałego sprzętu transportowego (55 osób), wyrobów niemetalicznych (51 osób) i sprzętu transportowego, a także przy produkcji niesklasyfikowanej gdzie indziej oraz w budownictwie (31 osób). W 2010 r. liczba osób zawodowo narażonych na styren powyżej wartości NDS wzrosła do 480, w tym: 203 osoby pracowały przy produkcji wyrobów gumowych i tworzyw sztucznych, 115 osób przy produkcji pojazdów samochodowych, 143 osoby przy produkcji pozostałego sprzętu transportowego, 5 osób było zatrudnionych przy produkcji włókien tekstylnych, 1 osoba przy produkcji chemikaliów, 8 osób przy produkcji gotowych wyrobów metalowych, 3 osoby w trakcie wykonywania specjalistycznych robót budowlanych oraz 2 osoby zatrudnione w handlu hurtowym (GIS 2010). W latach 2001-2010 w związku z narażeniem na styren zarejestrowano sześć przypadków chorób zawodowych: dwa przypadki zatrucia, trzy – choroby skóry oraz jeden przypadek przewlekłego zanikowego alergicznego nieżytu nosa, gardła lub krtani wywołany działaniem drażniącym styrenu. Działanie toksyczne styrenu u ludzi manifestuje się podrażnieniem: oczu, śluzówki nosa i gardła, a także zaburzeniami ze strony ośrodkowego układu nerwowego (OUN) w postaci zmian neurobehawioralnych oraz upośledzenia funkcji narządu wzroku i narządu słuchu. U pracowników przewlekle narażonych na styren opisano również zmiany: hematologiczne, czynnościowe wątroby, endokrynne i immunologiczne. Styren nie spełnia kryteriów klasyfikacji ustalonych dla toksyczności ostrej po podaniu drogą pokarmową, inhalacyjną lub dermalną w Unii Europejskiej. Styren wykazuje działanie genotoksyczne, wyrażone zmianami klastogennymi i aberracjami chromosomowymi w wyniku tworzenia adduktów z DNA przez jego tlenek. Według IARC nie ma wystarczającego dowodu na rakotwórcze działanie styrenu na ludzi, natomiast istnieje ograniczony dowód takiego działania u zwierząt (grupa 2B). Nie wykazano również embriotoksycznego, fetotoksycznego i teratogennego działania styrenu, natomiast istnieje możliwość szkodliwego działania styrenu na gonady męskie i na rozwój potomstwa w okresie postnatalnym. Podstawą do obliczenia wartości NDS dla styrenu były wyniki badań epidemiologicznych. Za skutki krytyczne przyjęto drażniące działanie tego związku oraz zaburzenia ze strony OUN. Zaproponowano pozostawienie obowiązującej w Polsce wartości NDS styrenu na poziomie 50 mg/m3 oraz zmniejszenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) do 100 mg/m3. Ponadto zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla sumy stężeń kwasu migdałowego (MA) i kwasu fenyloglioksalowego (PGA) w moczu pobranym pod koniec zmiany roboczej na poziomie 235 mg/g kreatyniny. Normatyw oznakowano literą „I” informującą, że jest to substancja o działaniu drażniącym.
Styrene monomer is a colorless to yellow oily liquid with a sweet, sharp odor at concentrations on the order of 426 mg/m3. Styrene has been produced by catalytic dehydrogenation of ethyl benzene. This compound is manufactured on a large scale. It has been widely used in the manufacture of polystyrene plastics, protective coatings, styrenated polyesters, copolymer resins with acrylonitrile and butadiene, and as a chemical intermediate. In Poland in 2010 the number of workers exposed to styrene at concentration above MAC value (50 mg/m3) was 480. In 2001 to 2010 six cases of professional diseases caused by styrene was noted. Results of animal studies revealed that styrene is a chemical of relatively low toxicity. In humans occupationally exposed to styrene an irritating effect to the eyes, both nose and throat mucosa, and central nervous system (CNS) disturbances (neurobehavioral, impairment of colour vision and hearing) were observed. Also, this chemical was caused hematological, hepatotoxic, andocrine, and immunological changes. Styrene exerts genotoxic effects causing an increase of single-strand breaks of DNA and chromosomal aberrations. There is inadequate evidence in humans and limited evidence in experimental animals for the carcinogenicity of styrene. The International Agency for Research on Cancer (IARC) has classified styrene to Group 2B. Styrene has shown neither embryotoxic, fetotoxic, and teratogenec effects. The recommended maximum admissible concentration (MAC) for styrene of 50 mg/m3 is based on the irritating effect and CNS disturbances in workers professionally exposed to this chemical. STEL value at 100 mg/m3, and “I” (irritating) notation has been proposed. Moreover, BEI value for sum of mandelic acid and phenylglyoxylic acid at level of 235 mg/g creatinine is recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 101-135
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hydrochinon
Hydroquinone
Autorzy:
Sitarek, K.
Powiązania:
https://bibliotekanauki.pl/articles/138104.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
hydrochinon
NDS
NDSCh
narażenie zawodowe
hydroquinone
MAC
OEL
occupational exposure
Opis:
Hydrochinon w temperaturze pokojowej jest ciałem stałym występującym w postaci białych, podłużnych kryształów. Jest stosowany jako czynnik redukujący, składnik wywoływaczy fotograficznych, przeciwutleniacz farb, lakierów, olejów, tworzyw sztucznych, gumy, a także jako czynnik wybielający w przemyśle kosmetycznym. U pracowników narażonych na pary chinonu i pyłu hydrochinonu obserwowano: podrażnienie oczu, nadwrażliwość na światło, łzawienie, uszkodzenie i zmętnienie rogówki. Podrażnienie oczu wskutek narażenia na hydrochinon występowało już po narażeniu na związek o stężeniu 2,25 mg/m3 i wzrastało wraz z wydłużeniem czasu narażenia oraz wzrostem stężenia tej substancji w powietrzu, doprowadzając do zapalenia i przebarwienia rogówki i spojówek. Medialne dawki śmiertelne hydrochinonu wynoszą 720 ÷ 1300 mg/kg masy ciała dla szczurów, 340 ÷ 400 mg/kg m.c. dla myszy, 550 mg/kg m.c. dla świnek oraz 70 mg/kg m.c. dla kotów. Po 13 tygodniach narażenia szczurów na hydrochinon per os w dawkach dziennych: 0; 25; 50; 100; 200 lub 400 mg/kg m. c. stwierdzono u zwierząt – otrzymujących dawkę 400 mg/kg i u niektórych z grupy otrzymującej dawkę 200 mg/kg – drżenie ciała i drgawki. Dawka hydrochinonu na poziomie 400 mg/kg m.c. była letalna dla szczurów. Szczury otrzymujące związek w dawce 200 mg/kg m.c. miały mniejszy przyrost masy ciała, a w badaniach patomorfologicznych stwierdzono u nich stany zapalne i/lub hiperplazję komórek nabłonkowych przedżołądka oraz zmiany histopatologiczne w nerkach U myszy, które narażano per os na hydrochinon w dawkach 25 ÷ 400 mg/kg m.c./dzień przez 13 tygodni, padnięcia zwierząt w grupie otrzymującej dawkę 400 mg/kg m.c. wynosiły 80%, a w grupie otrzymującej dawkę 200 mg/kg m.c. – 10%. U większości zwierząt narażanych na największe dawki związku obserwowano drżenie ciała. Tylko u zwierząt otrzymujących hydrochinon w dawce 400 mg/kg m.c. drżenia przechodziły w drgawki. Padnięcia zwierząt z grup otrzymujących związek w dawkach: 400; 200 lub 100 mg/kg m.c. poprzedzał stan śpiączki. U samców oraz u samic z grup otrzymujących hydrochinon w dawkach: 100 lub 400 mg/kg m.c. stwierdzono większą względną masę wątroby. W badaniach patomorfologicznych ujawniono: owrzodzenie i hyperplazję nabłonka przedżołądka u trzech na dziesięć narażanych samców i u dwóch na dziesięć narażanych samic z grupy otrzymującej dawkę 400 mg/kg m.c. hydrochinonu i u jednej na dziesięć narażanych samic z grupy otrzymującej dawkę 200 mg/kg m.c. Hydrochinon nie był czynnikiem mutagennym dla bakterii Salmonella typhimurium, ale powodował skutki genotoksyczne (indukcję mikrojąder i uszkodzenia DNA). W badaniach działania rakotwórczego hydrochinonu ujawniono pewne dowody świadczące o jego rakotwórczości dla szczurów i myszy (gruczolaki komórek kanalików nerkowych, białaczki monocytarne u szczurów oraz gruczolaki i raki wątrobowo-komórkowe u myszy). Nie ma dowodów działania rakotwórczego hydrochinonu u ludzi. W IARC zaliczono hydrochinon do grupy 3., tj. czynników nieklasyfikowanych pod względem rakotwórczości dla ludzi. Stwierdzono, że związek nie powodował istotnych zaburzeń rozwoju prenatalnego i płodności zwierząt doświadczalnych. Hydrochinon ulega wchłanianiu w przewodzie pokarmowym, a jest wydalany z moczem w postaci siarczanów i glukuronianów. W większości państw przyjęto, że wartość najwyższego dopuszczalnego stężenia (NDS) hydrochinonu w powietrzu środowiska pracy wynosi 2 mg/m3. Obowiązująca w Polsce wartość NDS hydrochinonu wynosi 2 mg/m3 (1982 r.), natomiast wartość NDSCh – 4 mg/m3 (1985 r.). Wartości te zostały przyjęte w latach 80. bez opracowania dokumentacji dopuszczalnych wielkości narażenia zawodowego. W Unii Europejskiej nie ustalono normatywów higienicznych dla hydrochinonu. Za podstawę wyliczenia wartości NDS hydrochinonu przyjęto działanie drażniące związku na oczy. Z obserwacji działania drażniącego na oczy człowieka wynika, że hydrochinon o stężeniu 2,25 mg/m3 w powietrzu środowiska pracy może powodować podrażnienie oczu. Krótkotrwałe narażenie na hydrochinon o stężeniu 13,5 mg/m3 oraz długotrwałe narażenie na związek o stężeniach 0,05 - 14,4 mg/m3 nasila jego działanie drażniące, prowadząc do zmian zapalnych i przebarwień rogówki oraz spojówek. Stężenie 2,25 mg/m3 hydrochinonu przyjęto za wartość LOAEL. Po zastosowaniu odpowiednich współczynników niepewności zaproponowano przyjęcie stężenia 1 mg/m3 hydrochinonu za wartość NDS i stężenia 2 mg/m3 za wartość NDSCh oraz oznaczanie normatywu literą „A” informującą, że jest to substancja o działaniu uczulającym. Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) hydrochinonu.
Hydroquinone is a white crystalline substance. It has been used in photography as a developer, and a raw material in the rubber industry, a stabilizer in oils, paints and as a chemical intermediate in dyes. LD50 for laboratory animals ranges from 70 to 550 mg/kg. Hydroquinone is negative in mutagenicity tests but it is a clastogenic agent. This chemical is absorbed from the gastrointestinal tract and is eliminated as a sulfate and glucuronide conjugates in the urine. Acute human exposure causes irritation, photophobia, lacrimation and corneal ulceration. The symptoms of acute severe poisoning include tinnitus, nausea, dizziness, increased respiration, pallor, headache and dyspnoea. The Expert Group recommended a MAC of 1.0 mg/m3 and MAC-STEL 2.0 mg/m3 and the “A” – allergic substance – notation.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 2 (56); 107-128
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Formaldehyd
Formaldehyde
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/138019.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
formaldehyd
narażenie zawodowe
działanie rakotwórcze
NDS
formaldehyde
occupational exposure
carcinogenicity
MAC
Opis:
Formaldehyd jest bezbarwnym gazem o specyficznym, ostrym, drażniącym zapachu. Około 50% całkowitej produkcji formaldehydu stanowi produkcja żywic formaldehydowych. Związek jest stosowany także w produkcji: klejów, barwników, farb i lakierów. Narażenie na formaldehyd występuje również w przemyśle włókienniczym, gdzie używa się go jako składnika kąpieli apreterskich. Bywa stosowany ponadto w: przemyśle papierniczym, fotograficznym, garbarskim, gumowym, rafineryjnym, odlewniczym i budownictwie. W medycynie i biologii formaldehyd jest stosowany w postaci formaliny lub para formaldehydu w celach dezynfekcyjnych oraz jako środek konserwujący i utrwalający preparaty medyczne i biologiczne. Według informacji uzyskanych przez Instytut Medycyny Pracy w Łodzi z wojewódzkich stacji sanitarno-epidemiologicznych w 2000 r. liczba osób zawodowo narażonych na formaldehyd o stężeniach powyżej obowiązującej wartości NDS (0,5 mg/m3) wynosiła ogółem 2196. Można przypuszczać, że w rzeczywistości liczba osób narażonych zawodowo na formaldehyd jest znacznie większa. W obrazie inhalacyjnego zatrucia formaldehydem u ludzi dominują objawy działania drażniącego na spojówki oczu i błony śluzowe dróg oddechowych, a także zaburzenia czynności płuc i nadreaktywność oskrzeli. Wyniki obserwacji w kierunku występowania objawów działania drażniącego w zależności od stężenia formaldehydu w powietrzu i długości czasu narażenia pochodzą przede wszystkim z badań na ochotnikach. Podrażnienie oczu jest najbardziej czułym parametrem w przypadku narażenia na formaldehyd. Wartości stężeń od 0,369 mg/m3 (0,3 ppm) z pikami do 0,74 mg/m3 (0,6 ppm) oraz od 0,615 mg/m3 (0,5 ppm) z pikami do 1,23 mg/m3 (1 ppm) przyjęto odpowiednio za subiektywną i obiektywną wartość NOAEL. Wyznaczono, na podstawie oszacowań przeprowadzonych przez grupy eksperckie, wartość NOAEL dla miejscowego działania drażniącego formaldehydu na poziomie 0,37 mg/m3 (0,3 ppm). Na podstawie wyników badań na zwierzętach narażanych inhalacyjnie na działanie formaldehydu u szczurów stwierdzono raki płaskonabłonkowe nosa. Ze względu na uzyskanie tych wyników badań na zwierzętach obserwacje u ludzi dotyczyły prześledzenia związku między występowaniem raka nosa i gardła oraz raka zatokowonosowego a narażeniem na formaldehyd. Kontrowersje istniały również wokół potencjalnego związku między zwiększoną zapadalnością na nowotwory płuc i białaczki a zawodowym narażeniem na formaldehyd w przemyśle. Grupa Robocza IARC uwzględniła w 2006 r. w procesie klasyfikacji pod kątem działania rakotwórczego formaldehydu – statystycznie znamienny wzrost występowania zgonów z powodu raków nosogardła w kohorcie składającej się z osób narażonych na formaldehyd w warunkach przemysłowych (praca podczas produkcji i/lub stosowania formaldehydu) i w grupie osób balsamujących zwłoki, chociaż w innych badaniach kohortowych raportowano mniej przypadków występowania raków nosogardła niż to było oczekiwane. W IARC uznano, że istnieją wystarczające epidemiologiczne dowody na to, że formaldehyd wywołuje raka nosogardła u ludzi, natomiast istniejące dowody są niewystarczające, aby uznać, że formaldehyd może powodować raka zatokowonosowego i białaczki u osób narażonych w przemyśle. Dane pochodzące z badań na zwierzętach stały się podstawą ilościowej oceny ryzyka wystąpienia dodatkowego nowotworu u ludzi. Mimo ciągle wielu niewiadomych wyliczenia te wskazują na niewielkie ryzyko pojawienia się nowotworów po narażeniu na formaldehyd o stężeniu poniżej 1 mg/m3. Według najnowszych szacowań ryzyko wystąpienia dodatkowych przypadków nowotworu nosa u ludzi narażonych na formaldehyd o stężeniu 0,37 mg/m3 (0,3 ppm) przez 40 lat wynosi 10-7 ÷ 10-8. Za skutek krytyczny ustalenia wartości NDS formaldehydu przyjęto działanie drażniące związku na błony śluzowe oczu i nosa. Do wyliczenia wartości NDS przyjęto wartość NOAEL (tzw. „obiektywną”) równą 0,615 mg/m3 (0,5 ppm) i wyznaczoną w badaniu na ochotnikach przeprowadzonym w 2007 r., w którym narażano 21 ochotników 10 razy, w ciągu kolejnych 10 dni, przez 4 h na formaldehyd o stężeniach: 0,18; 0,37 i 0,62 mg/m3 (0,15; 03 i 0,5 ppm). Octan etylu o stężeniach 43,2 ÷ 57,6 mg/3 (12 ÷ 16 ppm) był używany podczas 4 z 10 sesji jako czynnik maskujący zapach formaldehydu. Proponuje się przyjęcie stężenia 0,24 mg/m3 formaldehydu za wartość NDS, tj. zgodnie z wartością dopuszczalnego poziomu narażenia zawodowego zaproponowaną przez SCOEL (projekt trzeciego wykazu indykatywnych dopuszczalnych wartości narażenia zawodowego), a także przyjęcie stężenia 0,48 mg/m3 związku za wartość NDSCh ze względu na działanie drażniące formaldehydu oraz oznakowanie normatywu literami: „A” – substancja o działaniu uczulającym, „C” – substancja o działaniu żrącym oraz „Sk” – substancja wchłania się przez skórę.
Formaldehyde is a colourless gas with a pungent odour. Its widest use is in the production of resins with urea, phenol and melamine and, to a small extent, their derivatives. It is also used in the production of adhesives and binders for the wood, plastics, textiles, leather and related industries. Formaldehyde is used extensively as an intermediate in the manufacturing of industrial chemicals. Formaldehyde causes local irritation, acute and chronic toxicity and has genotoxic and cytotoxic properties. Vapors are highly irritating to the eye and the respiratory tract. Acute effects include nausea, headaches, and difficult breathing. Formaldehyde can also induce or exacerbate asthma. Chronic exposure is associated with respiratory symptoms and eye, nose and throat irritation. Repeated exposure of skin to the liquid causes irritation and allergic dermatitis. The most reliable data are obtained in controlled studies with volunteers. Twenty-one volunteers were examined over a 10-week period. Measurements were related to conjunctival redness, blinking frequency, nasal flow and resistance, pulmonary function and reaction times. Subjective assessments included discomfort; the influence of personality factors on subjective scoring was also evaluated. The authors concluded that eye irritation was the most sensitive parameter recorded, and that the no-observed-adverseeffect levels for subjective and objective eye irritation were 0.37 mg/m3 and 0.615 mg/m3 (0.3 and 0.5 ppm) respectively. International Agency for Research on Cancer classified formaldehyde as carcinogenic to human to group 1. Three types of cancers were assessed: nasopharyngeal cancer, leukaemia and sinonasal cancer. There was sufficient evidence that formaldehyde causes nasopharyngeal cancer, strong but not sufficient evidence of leukaemia and limited evidence of sinonasal cancer. On the basis of the latest data the risk of nose cancer was assessed as 10-7 ÷ 10-8 for formaldehyde concentration of 0.37 mg/m3/40 years. Maximum admissible concentration value of formaldehyde in the working environment in Poland has been established as 0.24 mg/m3 as a time weighed value and 0.48 mg/m3 as short-term based on the irritation effect. The verification of the MAC value of formaldehyde in the working environment is supposed to be adapted to European standards. Vacatio legis was established until 20 March 2008.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 3 (57); 51-125
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pirydyna
Pyridine
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137629.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pirydyna
toksyczność
narażenie zawodowe
NDS
pyridine
toxicity
occupational exposure
MAC
Opis:
Pirydyna jest stosowana jako rozpuszczalnik: farb, gumy, produktów farmaceutycznych, żywic poliwęglanowych i środków impregnacyjnych do tkanin. Duże ilości pirydyny Są stosowane jako związek wyjściowy do produkcji: pochodnych pirydyny, piperydyny, pestycydów, leków i innych produktów. Zawodowe narażenie na pirydynę może występować podczas: jej produkcji, dalszego jej przerobu i dystrybucji, a także uwalniania związku jako produktu rozkładu węgla czy smoły węglowej oraz produktów zawierających pirydynę. Stężenia pirydyny w powietrzu środowiska pracy w drugiej połowie XX w. kształtowały się od 0,002 do około 20 mg/m. Według danych Głównego Inspektora Sanitarnego łączna liczba pracowników narażonych Polsce na pirydynę o stężeniach w zakresie od > 0,1 do 0,5 wartości NUS (tj. 5 mg/m wynosiła 31 osób w 2010 r. oraz 46 osób w 2011 r. Nie było pracowników narażonych na pirydynę o stężeniach przekraczających 0,5 wartości NDS. Dawkę śmiertelną pirydyny dla człowieka oszacowano na 0,5 ÷ 5,0 mg/kg m.c. W opisanych przypadkach zatruć ostrych pirydyną obserwowano po zatruciu drogą pokarmową: nudności, zawroty głowy, ból brzucha i przekrwienie bierne płuc. Po zatruciu inhalacyjnym pirydyną objawy wskazywały na działanie związku na ośrodkowy układ nerwowy i charakteryzowały się zaburzeniami mowy oraz rozległymi cechami niedotlenienia kory mózgu. Opisano także przypadki przewlekłego zatrucia pirydyną pracowników zatrudnionych w zakładach chemicznych, w których stężenia pirydyny w powietrzu wynosiły około 19 ÷ 42 mg/m Objawami zatrucia były: bóle i zawroty głowy, nerwowość, bezsenność, czasami nudności i wymioty. Na podstawie wyników nielicznych badań epidemiologicznych nie stwierdzono wzrostu umieralności u osób narażonych na pirydynę w latach 1961- -1983 w trzech zakładach w Wielkiej Brytanii. Na podstawie wyników badań toksyczności ostrej na zwierzętach doświadczalnych (szczurach, my szach, świnkach morskich, królikach i psach) wykazano, że pirydyna należy do związków szkodliwych (Xn). Związek ten wykazywał słabe działanie drażniące na skórę królików i nie powodował uczulenia skóry w badaniach na świnkach morskich. W badaniach podprzewlekłych i przewlekłych, w których pirydynę podawano zwierzętom w różnych dawkach drogą pokarmową (p.o. lub w wodzie do picia), u zwierząt obserwowano: zmniejszenie przyrostu masy ciała, uszkodzenie wątroby i nerek oraz wpływ związku na układ rozrodczy. Pirydyna nie wykazała działania mutagennego. Na podstawie wyników badań na szczurach i myszach w programie NTP uznano, że dowód działania rakotwórczego pirydyny na szczury jest niejedno znaczny, natomiast istnieje wyraźny dowód działania rakotwórczego związku na myszy. W IARC zaliczono pirydynę do grupy 3., tj. związków nie- klasyfikowanych pod względem rakotwórczości dla ludzi. Za krytyczne skutki u ludzi po powtarzanym narażeniu na pirydynę uznano działanie depresyjne związku na ośrodkowy układ nerwowy (OUN) oraz skutki działania na wątrobę i nerki, będące najwcześniejszymi objawami toksycznego działania związku na gryzonie. Do wyprowadzenia wartości najwyższego dopuszczalnego stężenia (NDS) pirydyny przyjęto dane dotyczące skutków przewlekłego narażenia myszy i szczurów na związek drogą pokarmową. Wartości NOAEL/LOAEL dla podprzewlekłych i przewlekłych doświadczeń na gryzoniach mieszczą się w zakresie dawek od <7 do 50 mg/kg m.c. Na podstawie wyników 2-letnich badań, w których szczurom szczepu F344/N lub Wistar podawano pirydynę z wodą do picia, wykazano, że po najmniejszych podanych dawkach (7 lub 8 mg/kg/dzień) u części zwierząt wystąpiło uszkodzenie wątroby. Dawkę 7 mg/kg m.c. przyjęto więc za wartość ŁOA EL stanowiącą podstawą do wyprowadzenia wartości NDS pirydyny.
Pyridine, a cołorless liquid with a characteristic un pleasarit odor, has been categorized as a highly flam mable and harmful substance. It exerts harmful effects if inhaled, swalowed or absorbed through the skin. Pyridine is used as a solvent in paints, rubber, pharmaceuticals, polycarbonate resins and textile fabric impregnating agents. Its large quantities are applied as a precursor in the production of pyridine deriatives, piperidine, pesticides, phannaceuticals and other products. Occupational exposure to pyridine may occur during its production, further processing and distribution, as well as during the process of pyridine release, yield ing coal and tar breakdown products or pyridine containing products. In the second half of the 2Oth century pyridine air concentration in the occupational environment ranged from 0.002 to about 20 mg/m In Poland, according to the 2011 data of the Chief Sanitary Inspectorate, 31 workers in 2010 and 46 workers in 2011 were occupationally exposed to pyridine at concentrations from > 0.1 to 0.5 of the maximum admissible concentration (MAC) value, equal 5 mg/m No workers were exposed to pyridine at concentration exceeding the 0.5 MAC value. The human lethal dose of pyridine has been estimated at 0.5 - 5.0 mg/kg of body weight. In the reported cases of acute pyridine intoxication the following symptoms and signs were observed after ingestion: nausea, vertigo, abdominal pain and lung congestion and after inhalation: effects on the central nervous system (CNS) characterized by speech disorders and extensive cerebral cortex hypoxia. Chronic pyridine intoxication of workers employed in chemical plants, where its air concentrations reached 19 - 42 mg/m have also been reported. In those cases, such symptoms as headaches, vertigo, nervousness, insomnia, occasional nausea and vomiting were found. Based on the results of rather rare epidemiological studies no excess mortality among workers exposed to pyridine in three British plants was found in 1961—1983. The studies of acute toxic effect of pyridine carried out on laboratory animals (rats, mice, guinea pigs, rabbits and dogs) have evidenced that pyridine is a harmful (Xn) compound. Pyridine induces mild irritation effects on the rabbit skin, but it does not generate dermal allergy in guinea pigs. The studies of sub-chronic and chronic effects of pyridine, administered (per os or in drinking water) in different doses have revealed decreased body mass gain, liver and kidney damage and reproductive disorders in laboratory animals. Pyridine does not show mutagenic effects. Based on the results of studies on rats and mice, performed under the NTP program, the absence of clear-cut evidence that pyridine exerts carcinogenic effect on rats has been claimed, however, carcinogenic effect of pyridine on mice bas been evidenced. The International Agency for Research on cancer has categorized pyridine with respect to its potential carcinogenic risk to group 3 as not classifiable as to its car cinogenicity to humans. CNS depression observed iii humans after repeated exposure to pyridine, as well as the damage to liver and kidneys, the earliest symptoms of its toxic effect on rodents, are recognized as critical effects of tbis compound. The data on effects of chronic exposure of mice and rats to pyridine via ingestion served as grounds for estimating its MAC value. The values of no ob served adverse effect Ievel / the lowest observed adverse effect level (NOAEŁ/LOAEŁ) for sub chronic and chronic experiments on rodents fall within the range of > 7-50 mg/kg of body weight. The results of a two-year study on F344/N or Wistar rats administered pyridine in drinking water showed that the liver damage had occurred in a part of the study animals after the lowest doses (7 or 8 mg/kg/day). Therefore, a dose of 7 mg/kg of body weight was finally adopted as the LOAEŁ value, being the basis for setting the MAC value of pyridine. The LOAEŁ value of 7 mg/kg of body weight for pyridine corresponds with pyridine air concentration of 49 mg/m (15 ppm), providing that an adult person of 70 kg body weight inhales 10 m of the air during an 8-hour work shift. After applying coefficients of uncertainty (total value, 8), the MAC value for pyridine was estimated at 6.13 mg/m In the EU, the OEL value for pyridine bas not been set, however, maintaining its air concentration be bw 5 ppm (16 mg/m3 is recommended. The established pyridine MAC value of 6.13 mg/m3 not only meets this criterion but it is also close to the MAC value (5 mg/m for pyridine binding in Poland. The authors of the documentation have suggested to keep the MAC value for pyridine at 5 mg/m since according to the Chief Sanitary Inspectorate data for 2010-2011 in Po there were no workers exposed to pyridine at concentrations exceeding 0.5 of the MAC value (2.5 mg/m The compound was la belied with „Sk” indicating dermal absorption of the substance. There are no grounds for defining the maximum admissible short-term exposure level (STEL) for this compound. Therefore, it has been suggested to eliminate this value from the list of MAC values. The adherence to MAC value for pyridine of 5 mg/m should protect workers against harmful effects of pyridine on the CNS observed after exposure to its concentrations of 19—42 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 3 (77); 59-82
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan
Nitroethane
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958174.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Stosowany jest jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako: rozpuszczalnik estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Według danych Stacji Sanitarno Epidemiologicznej w Bydgoszczy w 2007 r. nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach, które by przekraczały obowią-zujące wartości najwyższego dopuszczalnego stężenia (NDS) 30 mg/m3. Nitroetan może wchłaniać się do organizmu w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3 roku życia, które przypad-kowo wypiły zmywacz do sztucznych paznokci zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica i czasem wymioty, a poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Brak jest danych dotyczących zatruć przewlekłych nitroetanem u ludzi oraz danych epidemiologicznych. Na podstawie wyników badań toksyczności ostrej zaklasyfikowano nitroetan do związków szkodli-wych. Nie wykazano działania drażniącego związku na oczy i skórę oraz jego działania uczulającego.W badaniach podprzewlekłych (narażenie trwało 4 lub 90 dni) i przewlekłych (narażenie trwało 2 lata) przeprowadzonych na szczurach i myszach w zakresie stężeń 310 ÷ 12 400 mg/m3 nitroetanu stwier-dzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenie: wątroby, śledziony, ślinianek oraz małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Po przewlekłym narażeniu szczurów (2 lata) na nitroetan o stężeniu 620 mg/m3 (LOAEL) stwierdzono niewielkie zmniejszenie masy ciała zwierząt narażanych oraz brak zmian w wynikach badań hemato-logicznych, biochemicznych i histopatologicznych. Stosując wartość LOAEL równą 620 mg/m3, a także odpowiednie współczynniki niepewności, zapro-ponowano przyjęcie stężenia 75 mg/m3 nitroetanu za wartość NDS związku. Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu. Zapropo-nowano, ze względu na działanie methemoglobinotwórcze związku, przyjęcie dla nitroetanu wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHb we krwi, która została ustalona dla wszystkich substancji methemoglobinotwórczych.
Nitroethane is a colorless oily liquid with a mildly fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), as well as a solvent or a dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur in the processes of its production and processing. According to data provided by the Sanitary and Epidemiological Station in Bydgoszcz, Poland, as of 2007 there had been no cases in the Polish industryof workers’ exposure to this compound that would exceed the maximum admissible concentration (MAC) value of 30 mg/m3. Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. 170 The discussed cases of nitroethane acute poisoning applied to children under three years of age caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane. A few hours after ingestion cyanosis and sporadic vomiting were observed in children and the methemoglobin level reached 40–50%. There are no data on chronic nitroethane poisoning in humans or data obtained from epidemio-logical studies. On the basis of the results of acute toxicity studies, nitroethane has been classified as a hazardous com-pounds. However, there has been no evidence of its eye and dermal irritation or allergic effects. The studies of sub-chronic (exposure lasting from 4 to 90 days) and chronic (2-year) exposure to nitroethane, carried out on rats and mice (concentration range, 310–12 400 mg/m3), revealed the methemoglobinogenic effect, as well as minor damage to the liver, spleen, salivary gland and nasal turbinates caused by nitroethane. Niroethane has shown neither mutagenic nor carconogenic effects. There has been no evidence of its influence on fertility either. After chronic (2-year) exposure of rats to nitroethane at 620 mg/m3 (the lowest observed adverse effect level – LOAEL), there was a slight change in the body mass of exposed animals, but there were no anomalies in hematological, biochemical and histopathological examinations. By applying the LOAEL value of 620 mg/m3 and relevant coefficients of uncertainty, the value of 75 mg/m3 has been suggested to be adoptedas the MAC value for this compound. There are no grounds for setting the value of short-term exposure limit (STEL) for nitroethane. On account of its methemoglobinogenic effect, 2% Met-Hb has been suggested to beadopted as the value of the biological exposure index (BEI), a value already adopted for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 155-170
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Izofluran
Isoflurane
Autorzy:
Soćko, R.
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/137604.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
izofluran
wartości NDS
narażenie zawodowe
isoflurane
MAC
OEL
occupational exposure
Opis:
Izofluran w temperaturze pokojowej jest bezbarwną, przezroczystą, lotną cieczą o delikatnym zapachu eteru. Jest anestetykiem wziewnym z grupy węglowodorów halogenowych wprowadzonym do praktyki klinicznej w 1981 r. Uważa się, że w porównaniu z innymi anestetykami jest on obciążony mniejszą liczbą działań ubocznych niż enfluran i większym od halotanu współczynnikiem terapeutycznym, a wśród halogenowych anestetyków izofluran jest uważany za związek o dużym marginesie bezpieczeństwa. Wielkość narażenia na izofluran w salach operacyjnych zależy od wyposażenia sal w kontrolowaną klimatyzację i wentylację, a także od metod podawania anestetyku. Średnie stężenie izofluranu dla 8-godzinnego czasu zmiany roboczej wynosiło w salach operacyjnych w województwie łódzkim około 2,7 mg/m3, a maksymalne stężenie – około 20,7 mg/m3. Skutki niepożądanego działania izofluranu obserwowano u ludzi poddawanych narkozie tym anestetykiem. Dotyczą one przede wszystkim narażenia na ten związek o bardzo dużych stężeniach, tzn. anestetycznych lub subanestetycznych. Izofluran powoduje u ludzi zależną od wielkości stężenia depresję ośrodkowego układu nerwowego, wykazuje działanie na układ sercowo-naczyniowy i oddechowy, a ponadto działa drażniąco na oczy, błony śluzowe dróg oddechowych i skórę. Wsród personelu medycznego bloków operacyjnych narażonego na działanie różnych anestetyków stwierdzono takie subiektywne objawy narażenia na izofluran, jak: odczucie zmęczenia, bóle głowy i rozdrażnienie. W dostępnym piśmiennictwie nie znaleziono informacji dotyczacych skutków zawodowego narażenia na izofluran. W dostępnym piśmiennictwie nie znaleziono także danych na temat działania rakotwórczego, embriotoksycznego oraz wpływu na rozrodczość izofluranu. Na podstawie wyników badań doświadczalnych nie stwierdzono również działania teratogennego i mutagennego izofluranu. Główną drogą usuwania izofluranu z organizmu wchłoniętego przez drogi oddechowe są płuca. Tą drogą jest on wydalany w postaci niezmienionej, a tylko niewielka jego część ulega u ludzi biotransformacji. W dostępnym piśmiennictwie nie znaleziono danych pozwalających na ocenę zależności skutków działania izofluranu od wielkości narażenia wśród personelu medycznego. Wartość normatywu higienicznego izofluranu w poszczególnych państwach mieści się w przedziale 15,2 ÷ 375 mg/m3 (2 ÷ 50 ppm). Przyjmując, że układem krytycznym działania izofluranu jest OUN i zakładając taki sam mechanizm działania jak w wypadku innych związków z tej grupy, zaproponowano przyjęcie dla izofuranu wartości najwyższego dopuszczalnego stężenia (NDS) równej 32 mg/m3 (4 ppm). Proponuje się nieustalanie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) izofluranu, ponieważ związek ten o stężeniach nawet 1000 razy większych od zaproponowanej wartości NDS nie powodował podrażnienia błon śluzowych dróg oddechowych.
Isoflurane is polyfluorinated anaesthetic used during surgical treatment in adult and child patients. It is usually applied as a mixture with oxygen or dinitrogen monoxide. An assessment of health risk from exposure to this inhalant anaesthetic poses a serious problem for employers, mostly due to the fact that this compound belongs to the category for which no Maximum Admissible Concentration (MAC) has been established. Consequently, there is no obligation to measure its air concentration in the workplace. However, the employer is responsible for determining whether or not a given hazardous agent is present in the working environment. The setting of a MAC value for isoflurane has recently been the objective of the activity of the Expert Group for Chemical Agents that has proposed accepting the MAC values of 32 mg/m3 (= 4 ppm) for isoflurane in assessment of workplace hazards. This exposure level is to protect surgical staff from adverse neurological, cardiovascular, respiratory and irritant effects.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 83-100
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trichloroeten
Trichloroethylene
Autorzy:
Jankowska, A.
Bystry, K.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138203.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
trichloroetan
TRI
NDS
narażenie zawodowe
trichloroethylene
MAC
occupational exposure
Opis:
Trichloroeten (Tri) jest lotną, przezroczystą, bez barwną cieczą o słodkim eterycznym zapachu, zbliżonym do zapachu chloroformu. Substancja jest stosowana do odtłuszczania metali oraz jako rozpuszczalnik, Pary trichloroetenu drażnią błony śluzowe nosa i gardła, powodują także podrażnienia skóry i oczu. U ludzi trichloroeten w warunkach narażenia inhalacyjnego działa hamująco na czynności ośrodkowego układu nerwowego i wywołuje: bóle i zawroty głowy, senność, nudności i utratę przytomności. Narażenie na trichloroeten o dużych stężeniach powodowało zgon. Trichloroeten wykazuje również działanie nefrotoksyczne oraz hepatotoksyczne. Według danych Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki i Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonego w Instytucie Medycyny Pracy w Łodzi, na działanie trichloroetenu w 2011 r. było narażonych 1239 pracowników, którzy byli zatrudnieni: przy ekstrakcji tłuszczów z nasion, czyszczeniu i odtłuszczaniu metali, w przemyśle gumowym, farb i atramentów drukarskich oraz lakierów. W 2010 r., zgodnie z danymi Głównego Inspektoratu Sanitarnego, 5 osób było narażonych na trichloroeten o stężeniach większych od obowiązującej wartości NDS, czyli 50 mg/m w tym 2 oso by były zatrudnione przy produkcji wyrobów metalowych, a 3 osoby - przy innej produkcji nie- sklasyfikowanej. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na trichloroeten było: upośledzenie funkcji OUN, skutki nefrotoksyczne, hepatotoksyczne oraz wakuolizacja komórek Clara płuc u myszy. W komórkach ssaków w warunkach in vitro czysty trichloroeten wywoływał: transformację komórek, wymianę chromatyd siostrzanych, mutację genów, lecz nie powodował aberracji chromosomów. W dostępnym piśmiennictwie istnieją ograniczone dowody działania rakotwórczego trichloroetenu na ludzi. Wyniki kilku badań kohortowych ludzi narażonych zawodowo na trichloroeten wykazały zwiększone ryzyko zachorowania na: nowotwory wątroby, przewodów żółciowych i nerek, a także na chłoniaka nieziarniczego. Narażenie myszy na trichloroeten drogą pokarmową prowadziło do wzrostu częstości nowotworów wątroby. Związek indukował u myszy i szczurów także nowotwory o innej lokalizacji. Eksperci IARC zaliczyli trichloroeten do gru 2A - grupy substancji prawdopodobnie kancerogennych dla ludzi. Wyniki badań dotyczących wpływu trichloroetenu na rozrodczość ludzi nie dostarczyły jednoznacznych dowodów działania toksycznego związku. dostępnym piśmiennictwie i bazach danych nie znaleziono informacji o wynikach badań epidemiologicznych dotyczących narażenia zawodowe go na trichloroeten, w których ryzyko skutku teratogennego zależałoby znacząco od narażenia na tę substancję. Trichloroeten jest dobrze wchłaniany wszystkimi drogami narażenia: w postaci par wchłania się układzie oddechowym, a ciekły w przewodzie pokarmowym oraz przez skórę. Metabolizm trichloroetenu w organizmie przebiega z udziałem cytochromu P-450 i glutationu Główne metabolity trichloroetenu - trichloroetan i kwas trichlorooctowy, są wydalane z moczem częściowo w postaci glukuronidów. Te dwa metabolity są stosowane jako biochemiczne wskaźniki narażenia. Część wchłoniętego trichloroetenu je wydalana z powietrzem wydychanym w postaci niezmienionej. Wydalanie trichloroetenu z powietrzem oraz wydalanie metabolitów przebieg wielofazowo. Wartość najwyższego dopuszczalnego stężeni (NDS) trichtoroetenu ustalono na podstawie działania jego neurotoksycznego oraz nefrotoksycze go. Proponuje się utrzymanie obowiązującej wartości NDS trichloroetenu, czyli 50 mg/m3 Z uwagi na działanie drażniące substancji oraz działanie par trichloroetenu na OUN, proponuje się przyjęcie wartości najwyższego dopuszczalnego stężeni chwilowego (NDSCh) na poziomie 100 mg/m3 (2 razy wartość NDS). Proponuje się także utrzymanie dotychczas zalecanej wartości dopuszczalnego stężenia w materiale biologicznym (DSB) n poziomie 20 mg TCA/1 moczu. Zaleca się również oznakowanie związku literam „l”- substancja o działaniu drażniącym, „Sk” substancja wchłania się przez skórę oraz „Rakotw.kat. 2.” — substancja rakotwórcza kategorii 2.
Trichloroethylene (Tri) is a volatile, colorless Iiquid with a sweetish odor resembling chloro form. Tri is mainly used in metal degreasing and as a solvent. Tri vapor is irritating to the eyes, nose, throat (mucous membranes) and skin. Human exposure to Tri results in CNS depression. Headache, dizziness, drowsiness, nausea, unconsciousness and death after exposure to very high concentrations have been observed. High doses of Tri produce hepatotoxicity and nephrotoxicity. After inhalation of Tri by laboratory animais, some adverse effects have been observed in CNS, liver, kidneys and Clara cells in mouse. In vitro studies in mammalian cells suggest that Tri can cause ceil transformation, sister chromatid exchange, gene mutations but does not produce chromosomal aberrations. There is limited evidence in humans for the carcinogenicity of Tri. The results of cohort studies indicate excessive risk of liver, biliary duct and kidney cancer and excessive risk of non Hodgkin’s lymphoma. Tri has produced liver tumours in mice after per os exposure as well as tumors at other sites in mice and rats. According to IARC, Tri is probably carcinogenic to humans (group 2A). The results of available studies show no consistent effects of Tri on the human reproductive system. To determine MAC value for Tri neurotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents suggest maintaining the current MAC value of 50 mg/m Due to the irritating potential of Tri vapors to CNS, a 5TEL value of 100 mg/m (2 X MAC) has been proposed. It has been also proposed to label the substance with „1” (irritant), Sk (substance can penetrate skin) and „Rakotw. kat. 2” (carcinogen category 2). The current BEI value of 20 mg TCA/I urine is maintained.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 4 (78); 83-118
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kwas octowy
Acetic acid
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/137407.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kwas octowy
NDS
narażenie zawodowe
acetic acid
OEL
MAC
occupational exposure
Opis:
Kwas octowy (kwas etanowy lub kwas metanokarboksylowy) to organiczny związek chemiczny z grupy kwasów karboksylowych. Związek jest bezbarwną, palną, lotną cieczą o ostrym zapachu. Kwas octowy jest stosowany w syntezie organicznej, używa się go do produkcji: sztucznego jedwabiu, leków (aspiryny, leków przeciwbakteryjnych, antybiotyków), taśmy filmowej, włókien syntetycznych (karboksymetylocelulozy, i poli (tereftalanu etylenu - butelki PET), jest sto stosowany również w technice grzewczej - do usuwania kamienia kotłowego. W postaci kilkuprocentowego roztworu(produkt fermentacji octowej) jest używany jako ocet spożywczy do konserwacji żywności i zbiorów rolnych. Kwas octowy jest zarejestrowany do stosowania jako nieselektywny herbicyd kontaktowy do zwalczania różnorodnych chwastów i niektórych traw. Kwas octowy jest substancją wielkotonażową. W Unii Europejskiej jest produkowany przez 54 producentów. W Polsce największym producentem są zakłady „Zachem” w Bydgoszczy. W polskim przemyśle, według danych Głównego Inspektoratu Sanitarnego w 2007 r. oraz w 2010 r. nie zgłaszano narażenia na kwas octowy o stężeniach przekraczających obowiązujące normy, tj. wartość najwyższego dopuszczalnego stężenia (NDS) = 15 mg/m oraz wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) = 30 mg/m Głównym skutkiem działania toksycznego par kwasu octowego jest działanie drażniące na błony śluzowe: nosa, oczu i skóry. Istnieją doniesienia w dostępnym piśmiennictwie o zatruciach ostrych kwasem octowym u ludzi po omyłkowym spożyciu kwasu lub w celach samobójczych oraz w wyniku nanoszenia kwasu octowego na skórę w celach leczniczych (kompres). Kwas octowy w dawce 20 ÷ 50 g lub w ilości 60 ÷ 70 ml jest uważany za śmiertelny dla ludzi. Po połknięciu lub na skutek kontaktu ze stężonym kwasem octowym występują: oparzenia, martwica tkanek, zapaść krążeniowa, skąpomocz, hemoliza i hemoglobinuria, a następnie bezmocz. Na podstawie wyników badań na zwierzętach nie wyznaczono wartości NOAEL dla działania drażniącego par kwasu octowego. Stężenie kwasu octowego powodujące zmniejszenie o 50% (RD częstości oddechów u myszy wynosiło 408 ÷ 560 mg/m (163 ÷ 227 ppm), natomiast u szczurów - 2600 mg/m (1040 ppm). W badaniu przeprowadzonym na ochotnikach, przy zastosowaniu standaryzowanej analizy psychofizycznej, wyznaczono próg zapachu kwasu octowego (OTH) na poziomie 1,5 mg/m (0,6 ppm) oraz próg działania drażniącego (limit lateralizacji) oparty na stymulacji wewnątrznosowych zakończeń nerwu trójdzielnego (LTH) na poziomie 100 mg/m (40 ppm). Narażenie ochotników na kwas octowy o stężeniu 25 mg/m (10 ppm) nie miało wpływu na: częstotliwość mrugania powiekami, wzrost oporu dróg oddechowych oraz stężenia mediatorów stanu zapalnego w popłuczynach z nosa. Proponuje się przyjęcie dla kwasu octowego wartości najwyższego dopuszczalnego stężenia NDS wynoszącej 25 mg/m (10 ppm), ustalonej w badaniach na ochotnikach. Po zastosowaniu odpowiednich współczynników niepewności przy jęto stężenie 25 mg/m za wartość NDS kwasu octowego. Zaproponowano także wartość najwyższego dopuszczalnego stężenia chwilowego NDSCh kwasu octowego na poziomie dwa razy wyższym, tj. 50 mg/m Dodatkowo zaproponowano oznakowanie związku literą „C” - substancja żrąca
Acetic acid is used in organic synthesis in producing artificial suk, drugs (aspirin, antibacterials, antibiotics), film tape, synthetic fibers (carboxymethyl cellulose, cellulose acetate, PET bottles and as a descaler. In the form of a weak solution (acetic acid fermentation product), it is used as vinegar for preserving food and agricultural harvest. Acetic acid is registered as a non-selective contact herbicide. It is an HPV substance. The main toxic effect of acetic acid vapor is irritating to the mucous membranes of the nose, eyes and skin. There have been reports of acute poisoning with acetic acid in humans following ingestion of acid by mistake or in suicides, a topical application of the acid to the skin for medicinal purposes, as a compress. Doses of 20-50 g or 60-70 ml of concentrated acetic acid are considered to be fatal to humans. After ingestion or upon contact with concentrated acetic acid, there are burns, necrosis, circulatory collapse, oliguria, hemolysis and hemoglobinuria, and anuria. In animal studies, there is no NOAEL for irritant vapors of acetic acid. The concentration of acetic acid, resulting in a reduction of 50% (RD5O) in respiratory rate in mice, is 408 mg/m (163 ppm) - 560 mg/m (227 ppm). The odor threshold of acetic acid (OTH) of 1.5 mg/m (0.6 ppm) and the lateralization limit based on the stimulation of the trigeminal nerve endings (LTH) of 100 mg/m (40 ppm) have been set. Studies in volunteers have hown that acetic acid in a concentration of 25 mg/m3 (10 ppm) does not cause any changes in the studied parameters. Only subjective feelings of acid odor perception have been reported. The effects of exposure in volunteers indicating sensory irritation of the trigeminal nerve, such as eye irritation, did not differ significantly at this concentration from the effects in a control group that was exposed to a vapor of acetic acid odor sensing threshold level, i.e. 1.5 mg/m (0.6 ppm). Acetic acid concentration of 25 mg/m3 (10 ppm) also had no effect on the frequency of blinking, the increase in airway resistance and concentration of the inflammatory mediators in the nasal lavage fluid. It is proposed to establish the limit values of acetic acid taken as NOAEC value of 25 mg/m3 (10 ppm) determined in tests on volunteers. After applying appropriate uncertainty factors, it was suggested to adopt the concentration of 25 mg/m as the maximum admissible concentration (MAC for this compound. It has been also recommended the short-term exposure limit (STEL) of 50 mg/m In addition, marking with the letter ”c” (corrosive) is proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 3 (77); 25-58
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Etyloamina
Ethylamine
Autorzy:
Kupczewska-Dobecka, M.
Dobecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/137652.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
etyloamina
aminoetan
NDS
narażenie zawodowe
ethylamine
aminoethane
MAC
OEL
ocupational exposure
Opis:
Etyloamina (EA) jest bezbarwną cieczą (w temperaturze niższej od 16,6 ºC), o ostrym amoniakalnym zapachu lub zapachu ryb oraz słonym smaku. Etyloamina znalazła zastosowanie w syntezie chemicznej i produkcji leków, jako półprodukt do produkcji pestycydów, herbicydów triazynowych (np. atrazyny i symazyny), surfaktantów (np. dimetyloetylotriazonu), przyspieszaczy, inhibitorów korozji, etyloamino-etanolu, 1,3-dietylotiomocznika, 4-etylomorfoliny, a także w przemyśle barwników i garbników oraz rafinacji ropy naftowej, gdzie występuje jako produkt pośredni. Narażenie inhalacyjne na pary EA powoduje podrażnienie błon śluzowych układu oddechowego charakteryzujące się bólem gardła, kaszlem, bólami w klatce piersiowej, dusznościami, sinicą i obrzękiem płuc. Pary EA wywołują podrażnienia lub oparzenia chemiczne skóry i oczu. Wielkość najniższego stężenia działającego nie jest znana. Stężony roztwór EA w kontakcie ze skórą powoduje oparzenia, nawet jeśli roztwór zostanie zmyty wodą z mydłem w ciągu kilku minut. W przypadku kontaktu ciekłej EA z oczami obserwowano martwicę rogówki. Głównym skutkiem przewlekłego narażenia na pary EA jest działanie drażniące na oczy. Obserwowano skutki działania drażniącego na oczy, charakteryzujące się zmętnieniem rogówki i obrzękiem u pracowników narażonych na etyloaminę. Nie podano wielkości stężenia EA w powietrzu środowiska pracy. U ludzi narażonych zawodowo na etyloaminy, tj. dietyloaminę, trietyloaminę i etyloaminę, występowały zaburzenia widzenia charakteryzujące się zamazanym, o zatartych konturach, zamglonym widzeniem i niebieskoczerwonym widzeniem. Nie wyjaśniono jednoznacznie, czy czysta etyloamina powoduje takie działanie. EA można zaliczyć do substancji szkodliwych. Wyznaczona wartość LD50 dla szczurów po podaniu dożołądkowym wynosi 400 mg/kg m.c., natomiast po podaniu na skórę – 390 mg/kg. Pary EA wykazywały słabą toksyczność u zwierząt w eksperymentach inhalacyjnych: LC50 wyznaczono na poziomie 2300 mg/m3 dla ssaka, natomiast na poziomie 10 000 mg/m3 w czasie 1 h dla szczura. Wyznaczona wartość RD50 dla samców myszy szczepu Swiss OF1 wynosi 278 mg/m3. Powtarzane narażenie na pary EA powoduje działanie drażniące na układ oddechowy u zwierząt. W 24- tygodniowym eksperymencie inhalacyjnym przeprowadzonym na szczurach nie obserwowano działania drażniącego etyloaminy o stężeniu 18 lub 180 mg/m3 na nabłonek nosa. W innym eksperymencie inhalacyjnym przeprowadzonym w latach 50. obserwowano działanie kardiotoksyczne EA przejawiające się uszkodzeniem mięśnia sercowego, a także działanie drażniące charakteryzujące się obrzękiem błony śluzowej nosa, przekrwieniem, występowaniem wydzieliny zapalnej oraz podrażnieniem oczu manifestującym się licznymi nadżerkami nabłonka, obrzękiem rogówki i migotki już przy stężeniu 90 mg/m3. Nie są znane inne badania naukowe, które zweryfikowałyby uzyskane w tym eksperymencie wyniki. Przyjmując działanie drażniące związku za główny efekt krytyczny, za podstawę ustalenia wartości NDS uznano wartość RD50 wyznaczoną w badaniach na myszach. Przyjmując wartość 1/30 RD50 zalecaną przez higienistów amerykańskich do ustalenia wartości NDS, jako wartość NDS etyloaminy należy przyjąć ok. 9,4 mg/m3. Ze względu na działanie drażniące etyloaminy proponuje się ustalenie wartości NDSCh na poziomie 18 mg/m3 (2 • NDS). Zaleca się oznakowanie substancji symbolem „Sk” (substancja wchłania się przez skórę), ponieważ wyznaczona wartość LD50s jest mniejsza niż 1000 mg/kg m.c. i wynosi dla królika 390 mg/kg.
Ethylamine (CAS number: 75-04-7), (synonym: aminoethane) is a colorless, flammable liquid or gas, depending on the ambient temperature, with an ammonia-like odor. Ethylamine is a dangerous fire hazard. Ethylamine is used in solvent extraction; organic synthesis; as a dye intermediate; as a stabilizer for rubber latex; in petroleum refining; and in the manufacture of detergents, photographic dyes, emulsifying agents, and medicinal products. Ethylamine is irritating to both the skin and eyes of test animals. The oral LD50 in rats is 400 mg/kg and the dermal LD50 in rabbits is 390 mg/kg. The RD50 (concentration producing a 50% decrease in respiration rate) in mice was 278 mg/m3 (151 ppm). Rabbits exposed 7 hours/day, 5 days/week for 6 weeks at 90 mg/m3 (50 ppm) ethylamine experienced irritation of the lungs and eyes. The lung lesions included peribronchitis and pneumonitis with thickening of small blood vessels. The ocular changes involved multiple epithelial erosions and edema of the cornea. Focal muscular degeneration of the heart was seen in some rabbits. Corneal and heart changes were not seen at 180 mg/m3 (100 ppm); however, the kidneys of this group showed slight to moderate parenchymatous degeneration. Rats exposed 6 hours/day, 5 days/week for 24 weeks at 18 mg/m3 or 180 mg/m3 (10 or 100 ppm) showed no adverse effects. In the same study, at 900 mg/m3 (500 ppm), body weight gains were reduced and inflammatory necrosis and squamous metaplasia were seen in the anterior portions of the nose. Eye irritation and corneal edema have been reported from ethylamine exposure in industry but concentrations of ethylamine have been unknown. Based on the RD50 value of ethylamine MAC–TWA of 9.4 mg/m3 and MAC-STEL of 18 mg/m3 are recommended to minimize the potential risk of irritation. Skin notation is proposed because of dermal LD50 in rabbits <1000 mg/kg. Notation „I” – irritating substance is recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 2 (48); 101-115
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ortokrzemian tetraetylu
Ethyl silicate
Autorzy:
Sapota, A.
Powiązania:
https://bibliotekanauki.pl/articles/137852.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
toksyczność
ortokrzemian tetraetylu
narażenie zawodowe
NDS
ethyl silicate
toxicity
occupational exposure
MAC
Opis:
Ortokrzemian tetraetylu jest bezbarwną cieczą o słabo wyczuwalnym zapachu. Związek ten znalazł zastosowanie w różnych gałęziach przemysłu, np.: w przemyśle chemicznym, farmaceutycznym czy farb i lakierów. Stosowany jest także jako preparat utwardzający (wzmacniający) kamień naturalny, terakotę, stiuk, freski i glinę, a także jest wykorzystywany przy produkcji cegieł oraz jako rozpuszczalnik wodoodporny i kwasoodporny do zaprawy murarskiej i cementu. Ortokrzemian tetraetylu wchłania się dobrze przez drogi oddechowe, z przewodu pokarmowego i słabo przez skórę. U pracowników narażonych na ortokrzemian tetraetylu związek ten wykazywał działanie drażniące na oczy i błonę śluzową nosa. Nie ma w dostępnym piśmiennictwie danych dotyczących przewlekłego działania ortokrzemianu tetraetylu u ludzi. Ostra toksyczność ortokrzemianu tetraetylu u zwierząt doświadczalnych wyrażona medialnymi dawkami letalnymi jest stosunkowo mała. Związek wykazuje łagodne działanie drażniące na oczy królika. Nie ma danych dotyczących toksyczności przewlekłej ortokrzemianu tetraetylu. W badaniach krótkoterminowych i podprzewlekłych na myszach i szczurach narażonych na ortokrzemian tetraetylu inhalacyjnie oraz po podaniu innymi drogami wykazano oprócz zmian martwiczych w nabłonku węchowym jamy nosowej także zmiany w wątrobie oraz nerkach, które obejmowały śródmiąższowe zapalenie nerek i zmiany martwicze w kanalikach nerkowych. W przypadku krótkoterminowego narażenia na ortokrzemianu tetraetylu o dużych stężeniach u zwierząt doświadczalnych obserwowano również działanie toksyczne związku na płuca (obrzęk płuc, nacieczenia leukocytów oraz wybroczyny krwawe w pęcherzykach płucnych i oskrzelach). Ortokrzemianu tetraetylu nie wykazywał działania mutagennego w testach Amesa. W dostępnym piśmiennictwie nie znaleziono także danych na temat jego działania embriotoksycznego, fetotoksycznego i teratogennego. Związek nie jest klasyfikowany przez IARC pod względem działania rakotwórczego. Z przedstawionych w dokumentacji danych wynika, że głównym skutkiem działania toksycznego u ludzi ortokrzemianu tetraetylu o dużych stężeniach (powyżej 2000 mg/m3) było działanie drażniące na oczy i błonę śluzową nosa, natomiast w przypadku zwierząt doświadczalnych działanie nefrotoksyczne oraz uszkodzenie nabłonka węchowego jamy nosowej. Za podstawę do obliczenia wartości NDS ortokrzemianu tetraetylu przyjęto jego działanie nefrotoksyczne. Narażenie inhalacyjne przez 90 dni szczurów, królików i świnek morskich na ortokrzemian tetraetylu o stężeniach: 199; 432 lub 760 mg/m3 nie wykazało żadnych zmian narządowych, co pozwoliło na przyjęcie stężenia 760 mg/m3 za wartość NOAEL. W innym doświadczeniu przeprowadzonym na szczurach narażanych przez 28 dni drogą inhalacyjną na działanie ortokrzemianu tetraetylu o stężeniu 850 mg/m3 wykazano jego działanie nefrotoksyczne, które manifestowało się śródmiąższowym zapaleniem nerek oraz zmianami martwiczymi w kanalikach nerkowych. Po przyjęciu odpowiednich współczynników niepewności oraz stężenia 760 mg/m3 za wartość NOAEL, wyliczona wartość NDS ortokrzemianu tetraetylu wynosi 95 mg/m3. W Polsce obowiązująca wartość NDS ortokrzemianu tetraetylu wynosi 80 mg/m3. W państwach Unii Europejskiej, a także w większości państw poza Unią, obowiązujące wartości NDS ortokrzemianu tetraetylu wynoszą 85 lub 87 mg/m3. Wobec stosunkowo niewielkiej różnicy między wartością obliczoną (95 mg/m3) a wartością dotychczas obowiązującą, proponujemy zachować wartość NDS ortokrzemianu tetraetylu na dotychczasowym poziomie, tj. wynoszącą 80 mg/m3. Zaproponowana wartość NDS ortokrzemianu tetraetylu powinna zabezpieczyć pracowników przed potencjalnym działaniem układowym. Ze względu na wysoki próg działania drażniącego na oczy i błony śluzowe u ludzi należy uznać, że przyjęta wartość zabezpieczy także przed działaniem drażniącym związku. Normatyw jest oznaczony literą „I”, ponieważ jest to substancja o działaniu drażniącym. Nie ma podstaw do przyjęcia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i dopuszczalnego stężenia w materiale biologicznym (DSB) ortokrzemianu tetraetylu.
Ethyl silicate is a colorless liquid with a slightly perceptible odor. This compound finds numerous applications in a number of industrial branches, e.g., paint and lacquer, chemical or pharmaceutical. It is also used as an agent to harden natural stone, terracotta, artificial marble, frescoes and clay as well as a water- and acid-resisting solvent applied in cement and masonry mortar in brick production. Ethyl silicate is well absorbed via respiratory and alimentary tracts, but its absorption through the skin is rather weak. In ethyl silicate-exposed workers, eye and nasal mucosa irritating properties of this compound have been observed. Data on chronic ethyl silicate effects in humans are not available in the literature. In laboratory animals, ethyl silicate’s acute toxicity, expressed in median lethal doses, is relatively low. Ethyl silicate shows a mild irritating effect on rabbits’ eyes. There is no data on ethyl silicate’s chronic toxicity. In short-term, sub-chronic studies performed on mice and rats exposed to ethyl silicate through inhalation and after its administration in other ways, along with necrotic lesions in the olfactory epithelium of the nasal cavity, there were changes in the liver and kidneys. The latter comprised interstitial inflammation and necrotic lesions in renal tubules. Short-term exposure of laboratory animals to high ethyl silicate doses induced its toxic effect on the lungs (pulmonary edema, leukocyte infiltration, petechia in pulmonary alveoli, and bronchial tubes). Ethyl silicate’s mutagenic effect has not been revealed in the Ames test. No data on embryotoxic, phototoxic, and teratogenic effects of ethyl silicate are available in the literature. This compound has not been categorized by the International Agency for Research on Cancer (IARC) with respect to its potential carcinogenic risk. The presented evidence shows that the major toxic effect of ethyl silicate at its high concentrations (over 2000 mg/m3) is eye and nasal mucosa irritation in humans, whereas the nephrotoxic effect and damage to the olfactory epithelium of the nasal cavity are observed in laboratory animals. On the basis of the nephrotoxic effect of ethyl silicate, its maximum allowable concentration (MAC) was calculated. Inhalation exposure of rats, rabbits and guinea pigs to ethyl silicate at concentrations of 199, 432, and 760 mg/m3 for 90 days did not reveal any organic changes, which has made it possible to adopt the concentration of 760 mg/m3 as the value of no observed adverse effect level (NOAEL). Another experiment performed on rats exposed via inhalation to this compound at the concentration of 850 mg/m3 for 28 days revealed its nephrotoxic effect manifestem by interstitial kidney inflammation and necrotic lesions in renal tubules After adopting relevant uncertainty coefficients and the concentration of 760 mg/m3 as the NOAEL value, the calculated MAC value for ethyl silicate is 95 mg/m3. In Poland, the binding MAC value for ethyl silicate is 80 mg/m3, whereas in other countries of the European Union (EU) and in most outside the EU, MAC values are kept at the level of 85 – 87 mg/m3. In view of the relatively small difference between the calculated value (95 mg/m3) and that binding to date, it is proposed to keep the MAC value at the present level, i.e., 80 mg/m3. The proposed MAC value should protect workers against the potential systemic ethyl silicate effect. Bearing in mind the high threshold of its irritating effect on eyes and mucous membrane in humans, it should be assumed that the adopted MAC value will also be effective in this case. There are no grounds for adopting MAC (STEL) and BEI values for this compound.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 3 (53); 75-89
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Siarkowodór
Hydrogen sulfide
Autorzy:
Stetkiewicz, J
Powiązania:
https://bibliotekanauki.pl/articles/138047.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
siarkowodór
H2S
narażenie
ryzyko
NDS
hydrogen sulfide (sulphide)
exposure
risk
MAC
Opis:
Hydrogen sulfide (H2S) is a colorless gas, heavier than air, with the characteristic odor of rotten eggs; it dissolves readily in water to form hydrosulphide water or, at higher concentrations, hydrosulphide acid. Hydrogen sulfide can be obtained by treating sulfides with acids or, in some cases, with water. Hydrogen sulfide is used in manufacturing sulfuric acid and in the laboratory as a chemical reagent. It is found in some mineral waters, volcanic fumes, and protein decomposition products. According to data released by the Chief Sanitary Inspector, six people were exposed to hydrogen sulfide above the maximum admissible concentration (MAC) (10 mg/m3) in the following Polish NACE (Nomenclature statistique des Activités économiques dans la Communauté Européenne) sectors in 2007: agriculture and hunting, construction, health and welfare services. Hydrogen sulfide is readily absorbed into the body through the lungs and, to a small extent, through the skin. In the organism, it is converted to tiosulfates and sulfates. The process occurs in the enzyme system involving sulfide oxidase, mainly in the liver and kidneys. The process of hydrogen sulfide detoxification that occurs in the intestinal mucosa requires also the involvement of thiol S-methyltransferase. Hydrogen sulfide is partially removed unchanged via the lungs, and with urine as free or conjugated sulfates. The rates of removal of hydrogen sulfide from the body have not been studied (there is no information on the removal rates). On the basis of the speed of recovery of H2S-poisoned people, it has been found that hydrogen sulfide elimination rate (H2S half-life, t1/2) is, roughly, from 60 min to several hours. Hydrogen sulfide toxicity is associated with blocking the activity of enzymes containing metals in the prosthetic group. Hydrogen sulfide in the cells blocks the active iron of cytochrome oxidase, the final enzyme in the mitochondrial respiratory chain, and the activity of carbonyl anhydrase. The tissues that are most sensitive to the activity of hydrogen sulfide include the mucous membranes and the tissues with a high demand for oxygen (nervous tissue and heart muscle). The values of median lethal concentrations of hydrogen sulfide for rats range between 450 and 701 mg/m3 (335–501 ppm). Inhalation exposure of rats and mice to hydrogen sulfide at concentrations of 42–112 mg/m3 for 70–90 days caused damage to the olfactory epithelium and produced signs of bronchial epithelium hyperplasia. Hydrogen sulfide concentration of 14 mg/m3 did not cause damage to the nasal olfactory epithelium or bronchial epithelium in the exposed animals and this value should be assumed to represent NOAEL. No data on the mutagenic, genotoxic or carcinogenic potential of hydrogen sulfide could be located. Hydrogen sulfide does not show embryotoxic or teratogenic activity or reproductive impairment in female rats exposed before and during pregnancy at 4–112 mg/m3. There is also no evidence of the effect of H2S on the growth and development of offspring, or impaired results of the performance or behavioral tests. The major target organs in acute H2S poisoning are the central nervous system and lungs. Hydrogen sulfide at high concentrations (above 4000 mg/m3) causes death of animals within a few to several seconds. It affects the respiratory system, causing cyanosis, dyspnea and eventually death. Exposures to lower concentrations of hydrogen sulfide immediately result in conjunctivitis and painful erosions in the cornea, as well as nose and throat irritation and bronchitis. Frequent complications include bronchopneumonia and pulmonary edema. A considerable number of cases of neurological and neuropsychological changes have been recorded following acute H2S poisoning. Under conditions of occupational and repeated exposure, the principal target organs of hydrogen sulfide are the nose, eyes and respiratory tract. Odor threshold for hydrogen sulfide is 0.18 mg/m3. Irritation of the conjunctiva and cornea was observed in workers exposed to hydrogen sulfide at 28 mg/m3. Hydrogen sulfide concentration of 14 mg/m3 showed no adverse effect on the respiratory system of volunteers exposed for 30 min, as well as in rats exposed by inhalation for 70–90 days. On the basis of the results of single inhalation exposure of volunteers to hydrogen sulfide, as well as experimental data on chronic inhalation exposure, the concentration of 14 mg/m3 has been adopted for the NOAEL. Assuming the value of only one factor of uncertainty for individual sensitivity is 2, the proposed value of the MAC of hydrogen sulfide should be 7 mg/m3. Considering the irritating and highly toxic activity of hydrogen sulfide, 14 mg/m3 has been proposed as the value of the short-term exposure limit (STEL). The proposed values of the hygienic standards should protect workers from the harmful effects of hydrogen sulfide on the eyes, the airways and the nervous system.
Siarkowodór (H2S) jest bezbarwnym, cięższym od powietrza gazem o zapachu zgniłych jaj, który dobrze rozpuszcza się w wodzie, tworząc wodę siarkowodorową lub w większych stężeniach kwas siarkowodorowy. Siarkowodór można otrzymać, działając kwasami (lub niekiedy wodą) na siarczki. Siarkowodór jest stosowany do produkcji kwasu siarkowego oraz w laboratoriach jako odczynnik chemiczny. Występuje w niektórych wodach mineralnych, wyziewach wulkanicznych oraz wśród produktów gnicia białek. Według danych Głównego Inspektora Sanitarnego w 2007 r. sześć osób było narażonych na siarkowodór powyżej wartości NDS (10 mg/m3) w następujących działach PKD: rolnictwo i łowiectwo, budownictwo oraz ochrona zdrowia i opieka społeczna. Siarkowodór łatwo wchłania się do organizmu przez płuca i w małym stopniu przez skórę. W ustroju podlega przemianie do tiosiarczanów i siarczanów. Proces zachodzi w układzie enzymatycznym z udziałem oksydazy siarczkowej, głównie w wątrobie i nerkach. W błonie śluzowej jelit w procesie detoksykacji siarkowodóru bierze też udział S-metylotransferaza tiolowa. Siarkowodór wydala się częściowo w postaci niezmienionej przez płuca oraz z moczem w postaci wolnych lub sprzężonych siarczanów. Szybkość wydalania siarkowodóru z organizmu nie była badana (nie ma informacji w dostępnym piśmiennictwie). Na podstawie szybkości powrotu do zdrowia ludzi zatrutych ustalono, że półokres wydalania siarkowodóru (t1/2) wynosi, w przybliżeniu, od 60 min do kilku godzin. Toksyczne działanie siarkowodoru jest związane z blokowaniem aktywności enzymów zawierających metale w grupie prostetycznej. Siarkowodór w komórkach blokuje aktywne żelazo oksydazy cytochromowej, końcowego enzymu łańcucha oddechowego w mitochondriach oraz aktywność anhydrazy karbonylowej. Najbardziej wrażliwymi na działanie siarkowodóru tkankami są błony śluzowe oraz tkanki o dużym zapotrzebowaniu na tlen (tkanka nerwowa i mięsień sercowy). Wartości medialnych stężeń śmiertelnych siarkowodóru dla szczurów mieszczą się w zakresie 450-701 mg/m3 (335 -501 ppm). Narażenie inhalacyjne szczurów i myszy na siarkowodóru o stężeniach 42- 112 mg/m3 przez 70 -90 dni powodowało uszkodzenie nabłonka węchowego oraz cechy rozrostu nabłonka oskrzeli. Siarkowodór o stężeniu 14 mg/m3 nie powodował uszkodzenia nabłonka węchowego nosa i nabłonka oskrzeli u narażanych zwierząt i wartość tę należy uznać za wartość NOAEL. W dostępnym piśmiennictwie i bazach danych nie znaleziono danych dotyczących działania muta-gennego, genotoksycznego i rakotwórczego siarkowodoru. Siarkowodór nie wykazuje działania embriotoksycznego i teratogennego oraz upośledzenia rozrodczości u samic szczura narażanych przed ciążą i w czasie ciąży na siarkowodór o stężeniach 14- 112 mg/m3. Nie wykazano również wpływu siarkowodoru na wzrost i rozwój potomstwa, jak również odchyleń w testach wydolnościowych i beha wioralnych. Głównymi narządami docelowymi w ostrych zatruciach siarkowodorem są: ośrodkowy układ nerwowy i płuca. Siarkowodór o dużych stężeniach (ponad 4000 mg/m3) powoduje padnięcia zwierząt w ciągu od kilku do kilkunastu sekund. Porażony zostaje układ oddechowy występuje sinica, duszność i zgon. Po narażeniu na siarkowodór o mniejszych stężeniach natychmiast pojawia się zapalenie spojówek i bolesne nadżerki rogówki, zostaje podrażniony nos i gardło, pojawia się zapalenie oskrzeli. Często powikłaniami są odoskrzelowe zapalenie płuc oraz obrzęk płuc. W następstwie ostrego zatrucia odnotowano znaczną liczbę przypadków zmian neurologicznych i neuropsychologicznych. W warunkach narażenia zawodowego, jak i powtarzanego głównymi narządami docelowymi działania siarkowodoru są: nos, oko i układ oddechowy. Próg zapachowy siarkowodoru wynosi 0,18 mg/m3. Działanie drażniące na spojówki i rogówkę obserwowano u pracowników narażanych na siarkowodór o stężeniu 28 mg/m3. Siarkowodór o stężeniu 14 mg/m3 nie wykazywał działania szkodliwego na układ oddechowy ochotników narażanych przez 30 min, jak również u szczurów narażanych inhalacyjnie przez 70-90 dni. Na podstawie wyników badań jednorazowego narażenia inhalacyjnego ochotników na siarkowodór, a także danych doświadczalnych z inhalacyjnej toksyczności przewlekłej przyjęto stężenie 14 mg/m3 za wartość NOAEL. Przyjmując wartość tylko jednego współczynnika niepewności dla wrażliwości osobniczej równą 2, to proponowana wartość najwyższego dopuszczalnego stężenia (NDS) siarkowodoru powinna wynosić 7 mg/m3. Z uwagi na działanie drażniące i silnie toksyczne siarkowodoru proponuje się przyjęcie stężenia 14 mg/m3 związku za jego wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Zaproponowane wartości normatywów higienicznych
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 4 (70); 97-117
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bezwodnik octowy
Acetic anhydride
Autorzy:
Jankowska, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138511.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
bezwodnik octowy
NDS
narażenie zawodowe
acetic anhydride
MAC
occupational exposure
Opis:
Bezwodnik octowy jest bezbarwną, ruchliwą cieczą o ostrym zapachu octu stosowaną do produkcji: włókien acetylocelulozowych, plastików, octanu winylu, leków, rozpuszczalników, materiałów wybuchowych oraz perfum. Bezwodnik octowy został zaklasyfikowany jako substancja: łatwopalna, żrąca oraz szkodliwa (działa szkodliwie przez drogi oddechowe i po połknięciu).Wedlu g danych Głównego Urzędu Statystycznego w Polsce w 2010 r. liczba pracowników zatrudnionych w warunkach narażenia na bez wodnik octowy o stężeniach między 0,1 a 0,5 wartości NDS (10 mg/m wynosiła 71 osób, natomiast w 2011 r. - 84 osoby. Liczba pracowników zawodowo narażonych na bezwodnik octowy o stężeniu powyżej 0,5 wartości NDS wynosiła 3 osoby. Bezwodnik octowy jest silnym środkiem drażniącym: błony śluzowe, oczy oraz skórę. Szybko reaguje z wodą wskutek czego powstaje kwas octowy. Narażenie ostre pracowników na pary bezwodnika o stężeniu powyżej 21 mg/m po wodowało podrażnienie oczu oraz błon śluzowych górnych dróg oddechowych. Narażenie ludzi na pary bezwodnika o większym stężeniu może powodować: owrzodzenie błony śluzowej nosa i prawdopodobnie skurcz oskrzeli, piecze nie oczu, a następnie w ciągu paru godzin obrzęk rogówki i spojówki, jak również zmętnienie rogówki. Wartość ŁD dla szczurów narażonych inhalacyjnie na działanie związku ustalono na poziomie 1680 mg/m dla narażenia per os - 1780 mg/kg m.c., natomiast w innym badaniu 630 mg/kg m.c. Wartość LD dla narażenia przez skórę u królików wynosi 4000 mg/kg m.c. U królików związek ten powodował ciężkie oparzenia oczu. Bezwodnik octowy podany na skórę królików pod opatrunek na 24 h powodował powstawanie oparzeń i pęcherzy. Szczury narażano na pary bezwodnika o stężeniach: 0; 4,2; 21 lub 84 mg/m przez 13 tygodni. Nie stwierdzono działania układowego związku po narażeniu zwierząt na bezwodnik o stężeniu 21 lub 84 mg/m Bezwodnik octowy u narażonych zwierząt o stężeniu 4,2 mg/m nie wykazywał działania miejscowego ani układowego. Wartość NOAEŁ dla szczurów została ustalona na poziomie 4,2 mg/m W testach Amesa nie stwierdzono działania mutagennego bezwodnika octowego. Wyniki testu mikrojądrowego na szpiku kostnym szczurów były negatywne. Bezwodnik octowy nie wykazywał ani działania genotoksycznego, ani mutagennego. W dostępnym piśmiennictwie i bazach danych nie znaleziono danych dotyczących działania rakotwórczego bezwodnika octowego. W badaniach doświadczalnych na szczurach nie stwierdzono działania embriotoksycznego, feto- toksycznego ani wpływu na rozrodczość bez- wodnika o stężeniu 105 mg/m chociaż u matek obserwowano silne podrażnienie dróg oddechowych. U dwóch samic narażanych na bez wodnik octowy o stężeniu 420 mg/m stwierdzono całkowitą resorpcję zarodków. W grupie narażanej na bezwodnik o stężeniu 420 mg/m u matek obserwowano ciężkie podrażnienie dróg oddechowych oraz redukcję masy ciała. Wartość NOAEL dla toksyczności rozwojowej i reprodukcyjnej bezwodnika octowego ustalono na poziomie 105 mg/m Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) dla bez- wodnika octowego. Zaproponowano ustalenie wartości NDS dla bezwodnika octowego przez analogię do kwasu octowego. Wartość NDS dla kwasu octowego ustalono na poziomie 25 mg/m Bezwodnik octowy składa się z dwóch cząsteczek kwasu octowego, więc zaproponowano przyjęcie za wartość NDS dla bezwodnika octowego połowy wartości NDS kwasu octowego, czyli 12 mg/m Ze względu na zabezpieczenia pracowników przed skutkami ostrego działania drażniącego bezwodnika octowego zaproponowano ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 24 mg/m Ze względu na działanie żrą ce bezwodnika octowego proponuje się oznaczenie go literą „C” (substancja o działaniu żrącym).
Acetic anhydride is a colorless, mobile liquid with a pungent acetic odor. It is used in manufacturing cellulose acetate fibers, plastics, vinyl acetate, pharmaceuticals, dyes and perfumes acetic anhydride is flammable, corrosive and harmful if inhaled or swallowed. It is rapidly hydrolyzed to acetic acid. In workers, acute toxicity of acetic anhydride at concentrations above 21 mg/m was observed in the form irritation of the eyes and mucous membranes of the upper respiratory tract. Higher vapor concentrations may produce ulceration of the nasal mucosa and possible bronchospasm, eye burning followed by corneal and conjunctival edema and corneal opacity. LC in rats is 1680 mg/m LD per os 1780 mg/kg m.c. or 630 mg/kg m.c.; and dermal LD in rabbits is 4000 mg/kg m.c. No systemic effects were observed after expo sure of rats to acetic anhydride at concentrations of 4.2,21 or 84 mg/m for 13 weeks. No evidence of mutagenicity in Ames test was observed. Results iii rat micronucleus assay were negative. Acetic anhydride has no significant mutagenic or genotoxic activity. For rats, the developmental and reproductive toxicity NOAEL is 105 mg/m There are no valid data available that are suitable for establishing a MAC value. MAC estimation by analogy to acetic acid has been proposed. The value of MAC for acetic acid is 25 mg/m Half of that value has been proposed as the value of MAC for acetic anhydride MAC, i.e., 12 mg/m In addition, 24 mg/m has been proposed as a short-term exposure limit (STEL) to protect employees from the irritation of the skin, eyes and mucous membranes of the upper respiratory tract. Consider ing evidence on the corrosive properties of acetic anhydride, additional notation with „C” has been recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 4 (78); 33-46
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitrotoluen – mieszanina izomerów
Nitrotoluene
Autorzy:
Sapota, A.
Kilanowicz, A
Powiązania:
https://bibliotekanauki.pl/articles/137449.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitrotoluen
działanie toksyczne
narażenie zawodowe
NDS
nitotoluene
toxicity
occupational exposure
MAC
Opis:
Nitrotoluen (NT) jest mieszaniną trzech izomerów: 2-, 3- i 4-nitrotoluen, które nie występują w stanie naturalnym. Nitrotoluen jest wykorzystywany do produkcji azowych i siarkowych barwników do bawełny, wełny, jedwabiu, skóry i papieru, a także jest stosowany w rolnictwie, fotografii, przemyśle farmaceutycznym oraz przy produkcji gum. Nie ma udokumentowanych danych dotyczących zatruć ostrych, przewlekłych oraz danych epidemiologicznych osób narażonych na nitrotoluen. Z badań toksyczności ostrej na zwierzętach doświadczalnych wynika, że zakresy wartości DL50 dla szczurów i myszy po podaniu dożołądkowym (per os) dla izomerów 2- i 3-NT wynosiły 891 ÷ 2463 mg/kg m.c., natomiast dla 4-NT – 1960 ÷ 7100 mg/kg m.c. Z badań toksyczności podprzewlekłej (13 tygodni) przeprowadzonych na dwóch gatunkach gryzoni obu płci (myszy i szczury) wynika, że najbardziej toksycznym izomerem jest 2-NT. U zwierząt po 13 tygodniach narażania na 2-NT wykazano: niewielki spadek liczby erytrocytów (RBC), zmniejszone stężenie hemoglobiny, wzrost liczby retikulocytów, leukocytów, wzrost średniej objętości krwinek czerwonych oraz wzrost stężenia methemoglobiny. Wszystkie badane stężenia izomeru powodowały zaburzenia czynności wątroby, śledziony i nerek. U większości narażanych zwierząt stwierdzono zmiany w wątrobie obejmujące przerost i wakuolizację hepatocytów, a także pojedyncze ogniska zapalne zbudowane głównie z eozynofilów. Stwierdzono ponadto istotnie wzmożoną proliferację komórek hematopoetycznych w śledzionie i w szpiku kostnym. Z badań przewlekłych (2-lata) przeprowadzonych przez NTP (2002) dla 2-NT i 4-NT na my-szach i szczurach obu płci wynika, że 2-NT wykazywał znacznie większą toksyczność niż 4-NT. 2-NT zarówno u myszy, jak i szczurów powodował zmniejszenie przyrostu masy ciała, a w badaniach histopatologicznych stwierdzono występowanie nowotworów: skóry, sutka i wątroby u szczurów obu płci, natomiast u samców także międzybłonka pochewki jądra i płuc. Działanie rakotwórcze 2-NT stwierdzono również u myszy obu płci, u których zmiany nowotworowe były zlokalizowane w układzie krążenia, jelicie grubym i wątrobie. Po podaniu 4-NT stwierdzono u szczurów samców jedynie pojedyncze przypadki nowotworów skóry oraz u samic przypadki raków gruczołu łechtaczkowego. U myszy skutki kancerogenne stwierdzono tylko u samców (raki oskrzelikowo-pęcherzykowe). Z analizy rodzaju i liczby obserwowanych nowotworów można wnioskować, że ten typ nowotworów nie powinien występować w wyniku narażenia zawodowego ludzi i nie może być podstawą do analizy ryzyka. Z uwagi na brak wystarczających dowodów działania rakotwórczego 2-NT na ludzi i ograniczone dowody działania rakotwórczego na zwierzęta doświadczalne Międzynarodowa Agencja Badań nad Rakiem (IARC) w 1996 r. zaliczyła nitrotoluen, na podstawie wyników eksperymentu 13-tygodniowego, do grupy 3., czyli związków nieklasyfikowanych jako kancerogeny dla ludzi (wyniki 2-letnich badań 2- i 4-NT wykonane na szczurach i myszach przez NTP zostały opublikowane w 2002 r.). Ze względu na brak badań toksyczności dla mieszaniny wszystkich trzech izomerów, do wyliczenia wartości NDS przyjęto wyniki 2-letnich badań dla najbardziej toksycznego izomeru, tj: 2-nitro-toluenu. W tym eksperymencie 2-NT podawano szczurom obu płci w paszy o stężeniach: 625; 1250 lub 2000 ppm przez 105 tygodni. Dawkę najmniejszą (625 ppm w paszy) odpowiadającą 25 mg/kg m.c./dzień dla samców i 30 mg/kg m.c./dzień dla samic przyjęto za wartość LOAEL. Ze względu na fakt, iż samce były znacznie bardziej wrażliwe niż samice na działanie 2-NT do obliczeń wartości NDS przyjęto dawkę 25 mg/kg m.c./dzień ustaloną dla samców za wartość LOAEL. Przyjmując cztery współczynniki niepewności, obliczono wartość NDS równą 11 mg/m3. Zaproponowana wartość NDS dotyczy poszczególnych izomerów nitrotoluenu (2-NT, 3-NT i 4-NT) oraz ich mieszaniny. Normatyw oznaczono literami „Sk‖ – substancja wchłania się przez skórę. Ze względu na działanie methemoglobinotwórcze zaproponowano wartość dopuszczalnego stężenia w materiale biologicznym (DSB) taką samą jak dla wszystkich substancji methemoglobinotwórczych, czyli 2% MetHb we krwi.
Nitrotoluene (NT) is a mixture of three isomers: 2-, 3- and 4-NT; it does not occur in a natural form. NT is used in the production of azo and sulfur dies for cotton, wool, silk, leather and paper. It is also used in the agriculture, photographic and pharmaceutical industries, as well as in the production of rubber. There are neither documented data on acute and chronic toxicity, nor epidemiological data on NT-exposed persons. The animal (rats and mice) studies of acute toxicity have revealed the following ranges of DL50 values after per os administration of isomers: 891÷2463 mg/kg body mass (b.m.) for 2- and 3-NT and 1960÷7100 mg/kg b.m. for 4-NT. Studies of subacute toxicity (13 weeks), performed on two species of rodents (mice and rats) of both genders, showed that 2-NT is the most toxic isomer. Thirteen weeks of 2-NT exposure caused an insignificant decrease in the number of erythro-cytes and in the concentration of hemoglobin, an enhanced number of reticulocytes and leuco-cytes, a diminished mean volume of erythrocytes and an augmented concentration of methe-moglobins. All the isomer concentrations induced functional disorders in the liver, spleen and kidneys. Most of the exposed animals showed lesions in the liver, mainly manifested by hyper-throphy and vacuolization of hepatocytes, and single inflammatory foci mostly composed of eosinophils. In addition, a significantly increased proliferation of hematopoietic cells in the spleen and bone marrow was observed. A long-term (2-year) study, carried out by the NTP (2002) on mice and rats (of both genders) exposed to 2-NT and 4-NT, have revealed a significantly higher toxicity of 2-NT than that of 4-NT. In both mice and rats, 2-NT decreased body mass gain. Moreover, subcutaneous skin carcino-ma, liver (hepatocellular) adenoma and mammary cancer were revealed on histopathological examination. In addition, mesothelioma of the tunica vaginalis testis and lungs were observed in males. A carcinogenic effect of 2-NT has also been found in mice of both genders, the ob-served neoplastic lesions were located in the circulatory system, large intestine and liver. Only single cases of subcutaneous carcinoma in male and clitoral carcinoma in female rats were found after 4-NT administration. In mice, carcinogenic effects of 4-NT administration were observed only in males (alveolar/bronchiolar carcinoma). Having analyzed the type and num-ber of the observed carcinomas, it can be concluded that this type of neoplasms due to occupa-tional exposure should not occur in humans and it cannot provide the basis for risk assessment. In 1996, in view of insufficient evidence that 2-NT is carcinogenic to humans on the basis of a 13-week experiment, IARC categorized nitrotoluene into group 3 — not classifiable as to its carcinogenicity to humans (the results of a 2-year study of 2- and 4-NT performed on rats and mice by NTP were published in 2002). Bearing in mind that no investigations on NT toxicity have been carried out to date, the results of a 2-year experiment for the most toxic isomer (2-NT) have been taken as a basis for calculat-ing the MAC value. In this experiment, 2-NT was administered to the rats (both genders) in their diet at three concentrations: 625, 1250 or 2000 ppm for 105 weeks. The lowest dose (625 ppm) that corresponded to 25 mg/kg body mass/day for males and 30 mg/kg body mass/day for females was accepted as the LOAEL value. Considering that males were much more sensitive to 2-NT effects than females, a dose of 25 mg/kg b.m./day set for males as the LOAEL value, was taken as a basis for the calculation of the MAC value. Having assumed four coefficients of un-certainty, the MAC value for NT was calculated at the level of 11 mg/m3. The recommended MAC values apply to individual NT isomers (2-NT, 3-NT and 4-NT) and to their mixture as a whole. It has been suggested to mark NT with ―Sk‖ — skin absorbed substance, and in view of its methemoglobinogenic effect, to adopt 2% MetHb in blood as the biological exposure index (BEI), like for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 2 (60); 93-132
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Terpentyna
Turpentine
Autorzy:
Kupczewska-Dobecka, M.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138414.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
terpentyna
terpeny
wartości NDS
narażenie zawodowe
turpentine
terpenes
MAC
OEL
occupational exposure
Opis:
Terpentyna jest mieszaniną olejków eterycznych i żywic otrzymywanych z miękkich drzew iglastych. Zawiera głównie terpeny, które są powszechnie występującymi grupami naturalnych związków chemicznych z fragmentami szkieletu węglowego izoprenu (2-metylo-1,3-butadienu). Zidentyfikowano ponad 4000 terpenów. Główne składniki terpentyny to dwupierścieniowe monoterpeny: α-pinen, β-pinen i Δ3-karen o wzorze C10H16. Skład chemiczny terpentyny jest zmienny i zależy od źródeł pochodzenia i metod jej otrzymywania. Terpentyna znalazła zastosowanie głównie w syntezie organicznej jako substrat do produkcji kamfory i mentolu oraz jako rozpuszczalnik do farb, żywic, wosków, środków polerujących i czyszczących, a także w przemyśle perfumeryjnym i w praktyce weterynaryjnej jako środek wykrztuśny oraz antyseptyczny. Terpentyna występuje jako produkt uboczny w produkcji papieru i masy celulozowej (terpentyna siarczanowa). Pary terpentyny wydzielają się z pyłem drewna podczas jego piłowania i obróbki. Wartości medialnych stężeń śmiertelnych par terpentyny u szczurów wynoszą od 12 040 mg/m3 (w ciągu 6 h narażenia) do 20 104 mg/m3 (w ciągu 1 h narażenia). Dla myszy wartość CL50 wynosi 29 000 mg/m3 (2 h). Wartość LD50 dla szczurów po podaniu dożołądkowym wynosi 5760 mg/kg m.c. Wyznaczone wartości RD50 dla monoterpenów wynoszą: 7478,2 mg/m3 dla (+)-Δ3-karenu, 7560 mg/m3 dla terpentyny i 5854 mg/m3 dla (+)-α-pinenu oraz 7094 mg/m3 dla (+)-β-pinenu. Terpentyna nie jest klasyfikowana pod kątem działania rakotwórczego. Terpentyna może wchłaniać się do organizmu z układu pokarmowego, przez skórę i z układu oddechowego. Wchłanianie przez płuca wynosiło 60 ÷ 70%. Główne metabolity terpentyny to cis- i trans-verbenole, których produktami hydroksylacji są następnie diole. Rozpiętość oszacowanych dawek śmiertelnych po połknięciu terpentyny u ludzi jest duża i wynosi 15 ÷ 110 g. Pary terpentyny wykazują działanie drażniące na skórę, błony śluzowe i oczy, a także mogą powodować zmiany w parametrach spirometrycznych funkcji płuc. Skutkiem narażenia na terpentynę jest zarówno alergiczne, jak i niealergiczne kontaktowe zapalenie skóry. Opisano przypadki wystąpienia skutków ostrego działania drażniącego na błony śluzowe nosa, oczu, skóry i dróg oddechowych, uszkodzenia nerek i śmierć po narażeniu zawodowym na pary terpentyny. Nie ma w dostępnym piśmiennictwie danych ilościowych charakteryzujących ostre narażenie inhalacyjne. W tartakach i zakładach stolarskich objawy podrażnienia oczu występowały u ludzi narażonych zawodowo na mieszaninę terpenów już o stężeniach rzędu 70 mg/m3. Obserwowane skutki można przypisać łącznemu działaniu terpenów i pyłów drewna o stężeniach 0,1 ÷ 4,6 mg/m3, dlatego danych tych nie wykorzystano do wyliczenia wartości NDS. Za wartość NOAEL terpentyny postanowiono przyjąć stężenie 225 mg/m3, które wyznaczono w eksperymencie na ochotnikach, podczas którego nie obserwowano objawów podrażnienia oczu, nosa, gardła i subiektywnych objawów ze strony ośrodkowego układu nerwowego (OUN) oraz statystycznie znamiennych zmian w parametrach funkcji płuc. Przyjmując współczynnik związany z wrażliwością osobniczą człowieka równy 2, proponuje się przyjąć stężenie 112 mg/m3 za wartość NDS terpentyny, a stężenie 300 mg/m3 za jej wartość NDSCh, ze względu na działanie drażniące związku. Wyznaczona wartość RD50 dla terpentyny wynosi 7560 mg/m3, stąd proponowana wartość NDS stanowi około 0,01 wartości RD50.
Turpentine is a general term for crude oleoresin obtained from soft wood conifers. Turpentine is a mixture of substances, mostly terpenes (58%.65). Terpenes are an ubiquitous group of natural compounds, with over 4000 identified, derived from units of isoprene (2-methyl-1,3-butadiene). Major components of turpentine are α-pinene, β-pinene, Δ3-carene, which are bicyclic monoterpenes with the molecular formula of C10H16. Turpentine is a by-product in the paper and pulp industry. Terpene vapors are also released with the dust during the process of sawing and treating timber and boards.Turpentine was formerly the most widely used paint thinner. It is also used as a solvent for various resins, polishes, and waxes. Turpentine is used in veterinary practice as an expectorant, rubifacient, and antiseptic, owing to its anti-microbial properties. Turpentine is increasingly being used as a raw material for making chemicals; turpentine and its monoterpenes are employed in liniments, perfumery, and in the synthesis of camphor and menthol. LC50 values for turpentine vapor in rats of 20,104 mg/m3 for 1-hour exposure and 12,040 mg/m3 for 6-hour exposure have been established. Signs of acute turpentine intoxication included ataxia, tremor, convulsions, tachypnea, decreased tidal volume, and death due to sudden apnea. Turpentine has an RD50 of 7560 mg/m3. Turpentine is a skin and mucous membrane irritant and sensitiser, and in high concentrations, a CNS depressant. Various chamber studies in healthy volunteers have shown that there is significant reporting of eye, nose, and throat irritation from turpentine, pinenes and Δ3-carene for 2-hour exposures with light exercise at 450 mg/m3, as well as an increase of airway resistance. In occupational exposure study with healthy volunteers, it has been found that TLco and alveolar volume decrease after exposure. This study showed that healthy volunteers exposed to sawmill air contaminants experienced an acute inflammatory reaction in the upper airways. In occupational studies, the association between exposure to terpenes and acute effects on lung function with personal exposures ranging from 11 to 158 mg/m3 of terpenes has been evaluated. A significant decrease in the carbon monoxide lung diffusing capacity was identified. In setting exposure limits, chamber studies were considered. Based on the NOAEL value of 225 mg/m3 and the relevant uncertainty factors, a MAC (TWA) value was calculated at 112 mg/m3 for turpentine to minimize the potential for upper respiratory tract irritation. MAC (STEL) value of 300 mg/m3 is recommended. Notations “I” (irritating substance) and “A” (sensitising substance) are recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 2 (48); 159-187
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dinitrotoluen – mieszanina izomerów
Dinitrotoluene
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137362.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dinitrotoluen
działanie toksyczne
narażenie zawodowe
NDS
dinitrotoluene
toxicity
occupational exposure
MAC
Opis:
Dinitrotoluen techniczny (DNT) jest mieszaniną sześciu izomerów o przybliżonym składzie: około 76% 2,4-DNT, 19% 2,6-DNT i około 5% pozostałych izomerów, tj.: 2,3-, 2,5, 3,4- i 3,5-DNT. Związek jest głównie stosowany jako substrat do wytwarzania diizocyjanianu toluenu i diaminotoluenu do produkcji pianek poliuretanowych oraz do produkcji materiałów wybuchowych. Szacuje się, że w Polsce na DNT jest narażonych kilkaset osób. DNT w znaczących ilościach może wchłaniać się w drogach oddechowych, z przewodu pokarmowego oraz przez skórę. Nie ma danych w dostępnym piśmiennictwie dotyczących ostrych zatruć tym związkiem u ludzi. Na podstawie wyników badań epidemiologicznych 183 górników narażonych na techniczny DNT przez ponad 20 lat wykazano, u 25% osób z badanej grupy: objawy uszkodzenia wątroby (wzrost aktywności AlAT, AspAT i γ-GTP), niedokrwistość lub problemy z oddychaniem, a u około 50% stwierdzono zwiększone wydalanie z moczem markerów nefrotoksyczności (α1-mikroglobuliny, α-GST). W badaniach większej (500 osób) kohorty stwierdzono występowanie nowotworów nerek (14 przypadków) oraz nowo-tworów dróg moczowych (6 przypadków). Wykazano, na podstawie wyników badań toksyczności ostrej, że techniczny DNT należy do związków szkodliwych, zgodnie z klasyfikacją UE. W badaniach na królikach związek nie wykazywał działania drażniącego. W badaniach podprzewlekłych przeprowadzonych na szczurach, które otrzymywały w paszy techniczny DNT w dawkach: 37,5; 75 lub 150 mg/kg/dzień przez 4 tygodnie, wykazano, oprócz spadku masy ciała po dwóch większych dawkach DNT, także istotny wzrost poziomu methemoglobiny i retikulocytów we krwi oraz ciałek Heinza w krwinkach czerwonych. Zmiany patologiczne w narządach wewnętrznych obserwowane u samców obejmowały odbarwienia i nieregularności powierzchni wątroby. Techniczny DNT w badaniach przewlekłych wywoływał nowotwory (głównie wątroby i dróg żółciowych) u szczurów oraz nowotwory nerek u myszy samców. IARC nie zaproponował klasyfikacji mieszaniny izomerów dinitrotoluenu, natomiast dwa izomery 2,4-DNT i 2,6-DNT zaliczył do grupy 2B, czyli związków o możliwym działaniu rakotwórczym dla człowieka. Przeprowadzono przewlekłe doświadczenie na szczurach, którym podawano w paszy DNT o składzie: około 98,5% 2,4-DNT lub około 1,5% 2,6-DNT. Po najmniejszej zastosowanej dawce (0,57 mg/kg/dzień dla samców i 0,71 mg/kg/dzień dla samic) nie stwierdzono skutków działania toksycznego DNT. Obserwowano jedynie łagodne nowotwory skóry (częstość występowania nieistotna statystycznie) oraz ogniska rozrostowe miąższu wątroby (również nieistotne statystycznie w porównaniu z grupą kontrolną), niemające znaczenia w przeniesieniu tych skutków na ludzi, dlatego najmniejszą stosowaną w tym doświadczeniu dawkę DNT przyjęto za wartość NOAEL związku. Wychodząc z wartości NOAEL równej 0,57 mg/kg, a także przyjmując odpowiednie współczynniki nie-pewności, obliczono wartość NDS dinitrotoluenu na poziomie 0,33 mg/m3. Zaproponowano, aby normatyw był dodatkowo oznaczony literami: Sk – substancja wchłania się przez skórę oraz Rakotw. Kat. 2 – substancja rozpatrywana jako rakotwórcza dla człowieka. Ze względu na działanie methemoglobinotwórcze związku zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHB we krwi jak dla wszystkich substancji methemoglobinotwórczych.
Technical dinitrotoluene (DNT) is a mixture of six isomers composed of 2,4-DNT (approx. 76%), 2,4-DNT (approx. 19%) and the remaining isomers, i.e. 2,3-, 2,5-, 3,4- and 3,5-DNT (approx. 5%). It is mostly applied as a substrate in the production of toluene diisocyanate and diaminotoluene used in the manufacturing of polyurethane foams and explosives. It has been estimated that in Poland there are several hundred DNT-exposed persons. Dinitroulene may be absorbed via the pulmonary and gastrointestinal tracts or through the skin. In the available literature there are no data on acute DNT intoxication in humans. Based on epidemiological studies it has been reported that in a group of 183 miners exposed to technical DNT for 20 years, 25% showed symptoms of liver damage (increased activity of AlAT, AspAT, and γ-GTP), anemia and respira-tion problems, whereas in 50% of the miners an increased excretion of nephrotoxic markers with urine (α1-microglobulin, α-GST) was observed. The study carried out on a larger (500 persons) cohort revealed 14 cases of kidney cancer and 6 cases of cancer of urinary tracts. Based on the studies of acute toxicity, it has been shown that, according to EU classification, technical DNT is a harmful compound. The studies performed on rabbits did not show any irritation signs in rabbits. The studies carried out on rats which were administrated technical DNT in three doses (37.5, 75 and 150 mg/kg/day) for four weeks revealed, besides body weight loss after two higher doses, a significant increase in the levels of methemoglobin and reticulocytes in blood, as well as in Heinz-body red blood cell counts. Pathologic changes in internal organs observed in male rats comprised depigmentation and irregularities on the surface of the liver. In the studies of chronic effects, technical DNT induced cancers mostly of the liver and bile ducts in rats and kidney cancer in male mice. The International Agency for Research on Cancer (IARC) has not proposed any classification of DNT isomer mixture; however, it categorized two isomers 2,4- and 2,6-DNT in group 2B – possibly carcinogenic to humans. A long-term experiment has been carried out on rats given DNT in fodder in the mixture of ap-prox. 98.5% of 2,4-DNT and 1.5% of 2,6-DNT. After the lowest dose (0.57 mg/kg/day for males and 0.71 mg/kg/day for females) of this compound no toxic effects were observed. Only benign neoplasms of the skin (statistically insignificant incidence) and the foci of liver parenchyma proliferation (also statistically insignificant compared to controls) were found, but insignificant as regards the extrapolation of these effects to humans. Therefore, the lowest DNT dose has been adopted as the value of its no-observed adverse effect level (NOAEL). Taking the value of NOAEL equal 0.57 mg/kg, as well as respective coefficients of uncertainty, the max-imum admissible concentration (MAC) for DNT was calculated at the level of 0.33 mg/m3. It has been sug-gested that DNT should be additionally marked with “Sk” – skin-absorbed substance and “Carcinogenic, cate-gory 2”. In view of the methemoglobinogenic property of this compound, MetHb concentration of 2% in blood as BEI value was proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 1 (59); 1-34
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies