- Tytuł:
- On potential kernels associated with random dynamical systems
- Autorzy:
-
Hmissi, M.
Mokchaha, F.
Hmissi, A. - Powiązania:
- https://bibliotekanauki.pl/articles/1397853.pdf
- Data publikacji:
- 2015
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
dynamical system
random dynamical systems
random differential equations
stochastic differential equation
potential kernel
domination principle
Lyapunov function - Opis:
- Let $(\Theta;, \phi)$ be a continuous random dynamical system defined on a probability space $(\Omega, F, P)$ and taking values on a locally compact Hausdorff space E. The associated potential kernel V is given by $V f(\omega, x) = \int_0^\infty f (\Theta_t \omega, \phi(t, \omega)x)dt, \omega \in \Omega, x \in E$. In this paper, we prove the equivalence of the following statements: 1. The potential kernel of $(\Theta, \phi)$ is proper, i.e. $V f$ is x-continuous for each bounded, x-continuous function with uniformly random compact support. 2. $(\Theta, \phi)$ has a global Lyapunov function, i.e. a function $ L : \Omega \times E \rightarrow (0, \infty) $ which is x-continuous and $ L(\Theta_t\omega, \phi(t,\omega)x) \downarrow 0$ as $ t \uparrow \infty $. In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.
- Źródło:
-
Opuscula Mathematica; 2015, 35, 4; 499-515
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki