Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Robust optimization" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Adjustable Robust Counterpart Optimization Model for Maximum Flow Problems with Box Uncertainty
Autorzy:
Agustini, Rahmah Arie
Chaerani, Diah
Hertini, Elis
Powiązania:
https://bibliotekanauki.pl/articles/1031851.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Adjustable Robust Counterpart
Linear Programming
Maximum flow problem
Robust Optimization
Opis:
The maximum flow problem is an optimization problem that aims to find the maximum flow value on a network. This problem can be solved by using Linear Programming. The obstacle that is often faced in determining the maximum flow is the magnitude of the capacity of each side of the network can often be changed due to certain factors. Therefore, we need one of the optimization fields that can calculate the uncertainty factor. The field of optimization carried out to overcome these uncertainties is Robust Optimization. This paper discusses the Optimization model for the maximum flow problem by calculating the uncertainties on parameters and adjustable variables using the Adjustable Robust Counterpart (ARC) Optimization model. In this ARC Optimization model it is assumed that there are indeterminate parameters in the form of side capacity in a network and an uncertain decision variable that is the amount of flow from the destination point (sink) to the source point (source). Calculation results from numerical simulations show that the ARC Optimization model provides the maximum number of flows in a network with a set of box uncertainty. Numerical simulations were obtained with Maple software.
Źródło:
World Scientific News; 2020, 141; 91-102
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uncertain Semivariogram Model using Robust Optimization for Application of Lead Pollutant Data
Autorzy:
Azizah, Annisa
Ruchjana, Budi Nurani
Chaerani, Diah
Powiązania:
https://bibliotekanauki.pl/articles/1030126.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Lead Pollutan
Linear Programming
Robust Optimization
Semivariogram
Software R
Opis:
Semivariogram is a half variance diagram of the difference between observations at the location s_i with another location that is as far as h units of distance. Semivariogram is used to describe the correlation of observation sorted by location. This research discusses the theoretical Semivariogram for the Spherical, Gaussian, and Exponential Semivariogram models through the Linear Programming approach. Next, the Semivariogram parameter estimation is studied with the assumption that there are data uncertainties, called the Uncertain Semivariogram. The method used to overcome the uncertainty data is Robust Optimization. The Uncertain Semivariogram using Robust Optimization are solved using the box and ellipsoidal uncertainty set approach. The calculation of the application of the model was carried out using the R software. For the case study, the application of the model used secondary data of Lead pollutant data in the Meuse River floodplains on the borders of France and the Netherlands at 164 locations. Based on the calculation results, the Exponential theoretical Semivariogram model is obtained as the best Semivariogram model, because it has a minimum SSE. Furthermore, the application of the Uncertain Semivariogram model using Robust Optimization on the Semivariogram Exponential model of Lead pollutant data is carried out using the box and ellipsoidal uncertainty set approach which is to obtain computationally tractable results.
Źródło:
World Scientific News; 2020, 143; 155-169
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies