- Tytuł:
- Nonlinear eigenvalue problems for fourth order ordinary differential equations
- Autorzy:
- Przybycin, Jolanta
- Powiązania:
- https://bibliotekanauki.pl/articles/1311640.pdf
- Data publikacji:
- 1995
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
bifurcation point
bifurcation interval
Leray-Schauder degree
characteristic value - Opis:
- This paper was inspired by the works of Chiappinelli ([3]) and Schmitt and Smith ([7]). We study the problem ℒu = λau + f(·,u,u',u'',u''') with separated boundary conditions on [0,π], where ℒ is a composition of two operators of Sturm-Liouville type. We assume that the nonlinear perturbation f satisfies the inequality |f(x,u,u',u'',u''')| ≤ M|u|. Because of the presence of f the considered equation does not in general have a linearization about 0. For this reason the global bifurcation theorem of Rabinowitz ([5], [6]) is not applicable here. We use the properties of Leray-Schauder degree to establish the existence of nontrivial solutions and describe their location. The results obtained are similar to those proved by Chiappinelli for Sturm-Liouville operators.
- Źródło:
-
Annales Polonici Mathematici; 1994-1995, 60, 3; 249-253
0066-2216 - Pojawia się w:
- Annales Polonici Mathematici
- Dostawca treści:
- Biblioteka Nauki