Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hankel transforms" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Response due to mechanical source in second axisymmetric problem of micropolar elastic medium
Autorzy:
Singh, R.
Powiązania:
https://bibliotekanauki.pl/articles/955263.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
transformata Laplace'a
siła skupiona
sprężystość
eigenvalue
micropolar elastic medium
Laplace transforms
Hankel transforms
concentrated force
microrotation
Rhomberg’s integration
Opis:
The second axisymmetric problem in a micropolar elastic medium has been investigated by employing an eigen value approach after applying the Laplace and the Hankel transforms. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms have been inversed by using a numerical technique to obtain the components of microrotation, displacement, force stress and couple stress in the physical domain. The results for these quantities are given and illustratred graphically.
Źródło:
International Journal of Applied Mechanics and Engineering; 2013, 18, 4; 1249-1261
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates
Autorzy:
Povstenko, Y.
Powiązania:
https://bibliotekanauki.pl/articles/121886.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
Tematy:
równanie ułamkowe
problem Cauchy'ego
transformaty Laplace'a
transformata Hankela
fractional equations
Cauchy problem
Laplace transforms
Hankel and Laplace transforms
Opis:
The diffusion-wave equation is a mathematical model of a wide range of important physical phenomena. The first and second Cauchy problems and the source problem for the diffusion-wave equation are considered in cylindrical coordinates. The Caputo fractional derivative is used. The Laplace and Hankel transforms are employed. The results are illustrated graphically.
Źródło:
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics; 2009, 14; 97-104
2450-9302
Pojawia się w:
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies