Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "decomposition method" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Approximate solution of painlevé equation i by natural decomposition method and laplace decomposition method
Autorzy:
Amir, Muhammad
Haider, Jamil Abbase
Ahmad, Shahbaz
Ashraf, Asifa
Gul, Sana
Powiązania:
https://bibliotekanauki.pl/articles/2233067.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
natural decomposition method
Laplace decomposition method
series solution
Adomain polynomial
Painlevéequation
Opis:
The Painlevé equations and their solutions occur in some areas of theoretical physics, pure and applied mathematics. This paper applies natural decomposition method (NDM) and Laplace decomposition method (LDM) to solve the second-order Painlevé equation. These methods are based on the Adomain polynomial to find the non-linear term in the differential equation. The approximate solution of Painlevé equations is determined in the series form, and recursive relation is used to calculate the remaining components. The results are compared with the existing numerical solutions in the literature to demonstrate the efficiency and validity of the proposed methods. Using these methods, we can properly handle a class of non-linear partial differential equations (NLPDEs) simply. Novelty: One of the key novelties of the Painlevé equations is their remarkable property of having only movable singularities, which means that their solutions do not have any singularities that are fixed in position. This property makes the Painlevé equations particularly useful in the study of non-linear systems, as it allows for the construction of exact solutions in certain cases. Another important feature of the Painlevé equations is their appearance in diverse fields such as statistical mechanics, random matrix theory and soliton theory. This has led to a wide range of applications, including the study of random processes, the dynamics of fluids and the behaviour of non-linear waves.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 3; 417--422
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dusty time fractional MHD flow of a Newtonian fluid through a cylindrical tube with a non-Darcian porous medium
Autorzy:
Imo-Mani-Singha, H.
Sengupta, Sanjib
Powiązania:
https://bibliotekanauki.pl/articles/1839832.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
time-fractional order Navier-Stokes equation
Laplace decomposition method
LDM
Magnetohydrodynamics
MHD
dusty flow
non-Darcy porous medium
ciecz newtonowska
przepływ cieczy nienewtonowskiej
Laplace Decomposition Method
magnetohydrodynamika
Opis:
In this paper, time fractional flow of a Newtonian fluid through a uniform cylindrical tube with a non-Darcy porous medium in the presence of dust particles under the application of a uniform magnetic field along the meridian axis is discussed. The implication of time fractional order differential equations in flow problems and some benefits of fractional order differential equations are highlighted. The Laplace Decomposition Method (LDM) is used to obtain an approximate solution to the proposed problem. The impact of fractional order and integer order of the differential equations and also the effects of some important parameters on the flow system are shown in the forms of graphs and a table. The convergence test of the solution is done. It has been observed that the fractional order differential equation reveals more things like the decrease in dust particle velocity due to the increase in magnetic field for fractional order derivatives, whereas, no noticeable change in dust particle velocity due to the change in magnetic field for integer order derivatives are observed. Also, it is observed that an increase in a fractional order derivative decrease the fluid as well as the dust particle velocities. The skin friction at the walls of the tube are also highlighted.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 4; 101-114
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dusty time fractional MHD flow of a Newtonian fluid through a cylindrical tube with a non-Darcian porous medium
Autorzy:
Imo-Mani-Singha, H.
Sengupta, Sanjib
Powiązania:
https://bibliotekanauki.pl/articles/1839728.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
time-fractional order Navier-Stokes equation
Laplace decomposition method
LDM
Magnetohydrodynamics
MHD
dusty flow
non-Darcy porous medium
ciecz newtonowska
przepływ cieczy nienewtonowskiej
Laplace Decomposition Method
magnetohydrodynamika
Opis:
In this paper, time fractional flow of a Newtonian fluid through a uniform cylindrical tube with a non-Darcy porous medium in the presence of dust particles under the application of a uniform magnetic field along the meridian axis is discussed. The implication of time fractional order differential equations in flow problems and some benefits of fractional order differential equations are highlighted. The Laplace Decomposition Method (LDM) is used to obtain an approximate solution to the proposed problem. The impact of fractional order and integer order of the differential equations and also the effects of some important parameters on the flow system are shown in the forms of graphs and a table. The convergence test of the solution is done. It has been observed that the fractional order differential equation reveals more things like the decrease in dust particle velocity due to the increase in magnetic field for fractional order derivatives, whereas, no noticeable change in dust particle velocity due to the change in magnetic field for integer order derivatives are observed. Also, it is observed that an increase in a fractional order derivative decrease the fluid as well as the dust particle velocities. The skin friction at the walls of the tube are also highlighted.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 4; 101-114
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies