- Tytuł:
- Speech nonfluency detection and classification based on linear prediction coefficients and neural networks
- Autorzy:
-
Kobus, A.
Kuniszyk-Jóźkowiak, W.
Smołka, E.
Codello, I. - Powiązania:
- https://bibliotekanauki.pl/articles/333600.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
- Tematy:
-
przewidywanie liniowe
liniowe kodowanie predykcyjne
sieci nuronowe
kowariancja
brak płynności
mowa
wykrywanie
perceptron
linear prediction
LPC
neural networks
Kohonen
covariance
nonfluency
speech
detection
radial - Opis:
- The goal of the paper is to present a speech nonfluency detection method based on linear prediction coefficients obtained by using the covariance method. The application “Dabar” was created for research. It implements three different methods of LP with the ability to send coefficients computed by them into the input of Kohonen networks. Neural networks were used to classify utterances in categories of fluent and nonfluent. The first one was Kohonen network (SOM), used to reduce LP coefficients representation of each window, which were used as input data to SOM input layer, to a vector of winning neurons of SOM output layer. Radial Basis Function (RBF) networks, linear networks and Multi-Layer Perceptrons were used as classifiers. The research was based on 55 fluent samples and 54 samples with blockades on plosives (p, b, d, t, k, g). The examination was finished with the outcome of 76% classifying.
- Źródło:
-
Journal of Medical Informatics & Technologies; 2010, 15; 135-143
1642-6037 - Pojawia się w:
- Journal of Medical Informatics & Technologies
- Dostawca treści:
- Biblioteka Nauki