Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mixed forests" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
APPLICATION OF MIXED MODELS AND FAMILIES OF CLASSIFIERS TO ESTIMATION OF FINANCIAL RISK PARAMETERS
Autorzy:
Grzybowska, Urszula
Karwański, Marek
Powiązania:
https://bibliotekanauki.pl/articles/452746.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
LGD
mixed models
random forests
gradient boosting
Opis:
The essential role in credit risk modeling is Loss Given Default (LGD) estimation. LGD is treated as a random variable with bimodal distribution. For LGD estimation advanced statistical models such as beta regression can be applied. Unfortunately, the parametric methods require amendments of the “inflation” type that lead to mixed modeling approach. Contrary to classical statistical methods based on probability distribution, the families of classifiers such as gradient boosting or random forests operate with information and allow for more flexible model adjustment. The problem encountered is comparison of obtained results. The aim of the paper is to present and compare results of LGD modeling using statistical methods and data mining approach. Calculations were done on real life data sourced from one of Polish large banks.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2015, 16, 1; 108-115
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies