- Tytuł:
- L(2, 1)-Labeling of Circulant Graphs
- Autorzy:
-
Mitra, Sarbari
Bhoumik, Soumya - Powiązania:
- https://bibliotekanauki.pl/articles/31343649.pdf
- Data publikacji:
- 2019-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
graph coloring
L(2
1)-labeling
circulants - Opis:
- An $L(2, 1)$-labeling of a graph $ \Gamma $ is an assignment of non-negative integers to the vertices such that adjacent vertices receive labels that differ by at least 2, and those at a distance of two receive labels that differ by at least one. Let $ \lambda_2^1 (\Gamma) $ denote the least $ \lambda $ such that $ \Gamma $ admits an $ L(2, 1) $-labeling using labels from $ \{ 0, 1, . . ., \lambda \} $. A Cayley graph of group $G$ is called a circulant graph of order $n$, if $ G = \mathbb{Z}_n$. In this paper initially we investigate the upper bound for the span of the $L(2, 1)$-labeling for Cayley graphs on cyclic groups with “large” connection sets. Then we extend our observation and find the span of $L(2, 1)$-labeling for any circulants of order $n$.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 1; 143-155
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki