- Tytuł:
- An inequality for imaginary parts of eigenvalues of non-compact operators with Hilbert-Schmidt Hermitian components
- Autorzy:
- Gil’, Michael
- Powiązania:
- https://bibliotekanauki.pl/articles/29519485.pdf
- Data publikacji:
- 2024
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
Hilbert space
linear operators
eigenvalues - Opis:
- Let $ A $ be a bounded linear operator in a complex separable Hilbert space, $ A^∗ $ be its adjoint one and $ A_I := (A − A^∗)//(2i) $. Assuming that $A_I $ is a Hilbert-Schmidt operator, we investigate perturbations of the imaginary parts of the eigenvalues of $ A $. Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. Besides, we refine the classical Weyl inequality $ \Sigma_{k=1}^\infty (Im \lambda_k (A))^2 ≤ N_2^2 (A_I) $, where $ λk(A) (k = 1, 2, . . .) $ are the eigenvalues of $ A $ and $ N_2(·) $ is the Hilbert-Schmidt norm. In addition, we discuss applications of our results to the Jacobi operators.
- Źródło:
-
Opuscula Mathematica; 2024, 44, 2; 241-248
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki