- Tytuł:
- Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series
- Autorzy:
- Weisz, Ferenc
- Powiązania:
- https://bibliotekanauki.pl/articles/1288490.pdf
- Data publikacji:
- 1996
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
martingale and classical Hardy spaces
p-atom
atomic decomposition
Walsh functions
Hardy-Littlewood inequality - Opis:
- The martingale Hardy space $H_p([0,1)^2)$ and the classical Hardy space $H_p(^2)$ are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from $H_p$ to $L_p$ (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.
- Źródło:
-
Studia Mathematica; 1995-1996, 117, 2; 173-194
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki