Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Elbeih, A." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Path to ε-HNIW with Reduced Impact Sensitivity
Autorzy:
Elbeih, A.
Husarova, A.
Zeman, S.
Powiązania:
https://bibliotekanauki.pl/articles/358508.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
HNIW
crystallization
thermal stability
impact sensitivity
SEM
Opis:
New purification method was applied to obtain epsilon HNIW (ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-HNIW) which has low impact sensitivity. The method is based on removing the impurities from a solution of alpha HNIW (ε-HNIW) by a chemical reaction to obtain pure epsilon form. For comparison, selected different published methods for recrystallization of HNIW to obtain the epsilon form were studied. All the selected methods are based on solvent-antisolvent technique. The optimum parameters, such as type of solvent and anti-solvent, volume ratio of solvent to anti-solvent, rate of addition, speed of stirring, etc., were applied to enhance the crystal size and shape of ε-HNIW. Checking the polymorphs of the obtained HNIW was done by Fourier transform infrared spectroscopy (FTIR). The thermal stability of the prepared samples was studied by using differential thermal analysis technique (DTA). Qualitative analysis of the crystal size and shape was done using scanning electron microscope (SEM) devise. Quantitative measurement of the crystals sizes for the studied samples was determined by Laser scattering particle size distribution analyzer. Impact sensitivity was measured by falling hammer test. The results indicate that all the applied methods of recrystallization give ε-HNIW. The impact sensitivity of HNIW decreases by obtaining small particles with regular shape. All the used published methods produce ε-HNIW with higher impact sensitivity than other nitramines. While the obtained crystals from the new method has regular smooth surface, with small particle size and its impact sensitivity is lower than RDX and HMX.
Źródło:
Central European Journal of Energetic Materials; 2011, 8, 3; 173-182
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance and Detonation Characteristics of Polyurethane Matrix Bonded Attractive Nitramines
Autorzy:
Elbeih, A.
Wafy, T. Z.
Elshenawy, T.
Powiązania:
https://bibliotekanauki.pl/articles/358369.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
BCHMX
HNIW
detonation
shaped charge
brisance
Opis:
Several cast-cured plastic bonded explosives (PBXs) based on cyclic nitramines bonded by a polyurethane matrix have been prepared and studied. The nitramines were ε-CL20 (ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-HNIW), BCHMX (bicyclo-HMX, cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane). The detonation velocities were measured experimentally. The brisance of the prepared compositions was determined by the Kast method. The penetration performance of shaped charges filled with the prepared compositions was measured experimentally. The detonation parameters of the studied compositions and the individual explosives were calculated using the EXPLO5 thermodynamic code. It was concluded that CL20-HTPB has the highest detonation characteristics and performance of all of the prepared PBXs. BCHMX-HTPB is an interesting PBX with performance and detonation characteristics higher than those of RDX-HTPB. A linear relationship between the detonation pressures of the prepared PBXs and their performances in terms of the explosive brisance was observed; while the penetration depths formed by the shaped charge jets depended on the Gurney velocity of the studied PBXs samples.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 1; 77-89
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines
Autorzy:
Elbeih, A.
Zeman, S.
Jungova, M.
Akstein, Z.
Powiązania:
https://bibliotekanauki.pl/articles/358359.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
HNIW
BCHMX
RDX
HMX
sensitivity
performance
Opis:
Different polymeric matrices, based on butadiene-styrene rubber, polymethyl-methacrylate and silicone binders, were investigated for their ability to decrease the sensitivity of explosives to different mechanical stimuli. A series of plastic explosives based on four different nitramines, namely RDX (1,3,5-trinitro- 1,3,5-triazacyclohexane), β-HMX (β-1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane), BCHMX (bicycloHMX, cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5- d ]imidazole) and ε -HNIW (ε -2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-CL-20), bonded by the selected polymeric matrices were prepared. Sensitivity to impact of all of the plastic explosives prepared as well as of the pure explosives, was measured using the fall hammer test. Sensitivity to friction was determined using the BAM friction test. The performance was studied using the ballistic mortar test and the results were recorded relative to TNT (trinitrotoluene) as reference. By comparing the results of impact and friction sensitivities, it is obvious that the mechanism of transfer of the friction force to the reaction center of the nitramine molecule should be different from that of impact energy transfer. The silicone binder appeared to be the best polymer for decreasing the sensitivity of explosives. The results of the ballistic mortar proved that the performance of the plastic explosives prepared is affected by the type and weight percentage of the binder in each sample.
Źródło:
Central European Journal of Energetic Materials; 2012, 9, 2; 131-138
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal Stability and Detonation Characteristics of Pressed and Elastic Explosives on the Basis of Selected Cyclic Nitramines
Autorzy:
Elbeih, A.
Pachmáň, J.
Zeman, S.
Trzciński, W. A.
Akstein, Z.
Sućeska, M.
Powiązania:
https://bibliotekanauki.pl/articles/358014.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
detonation
C4 matrix
BCHMX
HMX
HNIW
RDX
stability
Viton
Opis:
Bicyclo-HM X (cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d] imidazole or BCHM X) was studied as a plastic explosive bonded with the C4 matrix and with Viton A. Also a series of nitramines namely RDX (1,3,5-trinitro-1,3,5=triazinane), HM X (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) and HNIW (ĺ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ĺ-CL-20) were studied for comparison with the same types of binders. The detonation velocity, D, of all prepared mixtures was measured. Their thermal stability was determined using non-isothermal differential thermal analysis (DTA). While the C4 matrix lowers the thermal stability of the resulting explosives, Viton A enhances this stability. Approximate relationships between the peaks of exothermic decomposition and the D values were found. The detonation parameters were also calculated by means of Kamlet & Jacobs method, CHEETAH and improved EXPLO5 code for all the mixtures. From the measured D values and the calculated detonation parameters, it is obvious that the detonation parameters of BCHM X-mixtures are very close to HM X-explosives and better than those of RDX-mixtures. It was found that the C4 matrix reduces the difference between the values of energy of detonation in the studied C4 mixtures. As expected, the pressed HNIW-Viton A mixture has the highest detonation parameters of all of the prepared mixtures.
Źródło:
Central European Journal of Energetic Materials; 2010, 7, 3; 217-232
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies