Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hybrid model;" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
An improved formula for dead time correction of G-M detectors
Autorzy:
Arkani, M.
Khalafi, H.
Powiązania:
https://bibliotekanauki.pl/articles/147009.pdf
Data publikacji:
2013
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
dead time model
Geiger-Müller (G-M) detector
decaying source experiment
hybrid model
Opis:
Different analytical formulae have been described in the literature to modify response of Geiger-Müller (G-M) detectors. In this work, improvement of a previously proposed dead time correction formula was investigated. A set of experimental data of a decaying source was the basis of the analysis. A general agreement is seen with the experimental data. The result was compared with those obtained by the original work. Numerical aspects were also examined.
Źródło:
Nukleonika; 2013, 58, 4; 533-536
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient dead time correction of G-M counters using feed forward artificial neural network
Autorzy:
Arkani, M.
Khalafi, A.
Powiązania:
https://bibliotekanauki.pl/articles/146121.pdf
Data publikacji:
2013
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
dead time
artificial neural network (ANN)
Geiger-Müller (G-M) detector
hybrid model
source decaying experiment
Opis:
Dead time parameter of Geiger-Müller (G-M) counters causes a great uncertainty in their response to the incident radiation intensity at high counting rates. As their applications in experimental nuclear science are widespread, many attempts have been done on improvements of their nonlinear response. In this work, response of a G-M counter system is optimized and corrected efficiently using feed forward artificial neural network (ANN). This method is simple, fast, and provides the answer to the problem explicitly with no need for iteration. The method is applied to a set of decaying source experimental data measured by a fairly large G-M tube. The results are compared with those predicted by a given analytical model which is called hybrid model. The maximum deviation of the corrected results from the true counting rates is less than 4% which is a significant improvement in comparison with the results obtained by the analytical method. Results of this study show that by using a proper artificial neural network structure, the dead time effects of G-M counters can be tolerated significantly.
Źródło:
Nukleonika; 2013, 58, 2; 317-321
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies