Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gaussian" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
BADANIE PREFERENCJI PRZEDSIĘBIORSTW W STOSOWANIU ZAAWANSOWANYCH METOD ANALIZY DANYCH
SURVEY ANALYSIS ON ENTERPRENEURS’ PREFERENCES TOWARDS ADVANCED DATA ANALYSIS METHODS
Autorzy:
Barska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/972826.pdf
Data publikacji:
2018
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
analiza skupień
modele mieszanin rozkładów normalnych
cluster analysis
Gaussian mixture models
Opis:
Potrzeby firm w zakresie stosowania zaawansowanych metod przetwarzania danych są różne w zależności od branży funkcjonowania, możliwości finansowania, zachowań konkurencji, rozmiaru i zmienności gromadzonych informacji. W pewnych przypadkach technologie business intelligence, wizualizacja lub metody statystyczne stają się niezbędne do funkcjonowania firmy, w innych są sposobem zwiększenia wydajności oraz uzyskania przewagi konkurencyjnej. Celem publikacji jest analiza różnic w podejściu przedsiębiorstw do stosowania tych technologii. Sprawdzono, czy istnieją cechy powodujące, że dana grupa jest podatna na ofertę związaną z big data i data science. Realizacji tego celu służy analiza skupień, pozwalająca na wyznaczenie grup klientów o podobnej charakterystyce. Wyniki badania wskazują, że źródłem różnic są cechy demograficzne, odmienne oczekiwania oraz dotychczasowe doświadczenia.
Enterpreneurs’ needs in terms of advanced data analysis methods vary depending on the business sector, funding flexibility, competitors’ behavior, volume and volatility of stored information. Business intelligence, visualisation or statistical methods become essential for performing daily operations in some cases, while in the others they develop into a mean of increasing efficiency or gaining competitive advantage. This publication analyses the differences in enterprises' attitude towards application of hot technologies. An attempt is made to distinguish certain features that potentially make a particular group prone to use offered solutions. This objective is accomplished with a cluster analysis carried out to determine client segments sharing similar characteristics. The results indicate that main differences arise from demographic features, varied expectations and past experiences.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2018, 19, 2; 105-116
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speaker Model Clustering to Construct Background Models for Speaker Verification
Autorzy:
Dişken, G.
Tüfekci, Z.
Çevik, U.
Powiązania:
https://bibliotekanauki.pl/articles/177299.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Gaussian mixture models
k-means
imposter models
speaker clustering
speaker verification
Opis:
Conventional speaker recognition systems use the Universal Background Model (UBM) as an imposter for all speakers. In this paper, speaker models are clustered to obtain better imposter model representations for speaker verification purpose. First, a UBM is trained, and speaker models are adapted from the UBM. Then, the k-means algorithm with the Euclidean distance measure is applied to the speaker models. The speakers are divided into two, three, four, and five clusters. The resulting cluster centers are used as background models of their respective speakers. Experiments showed that the proposed method consistently produced lower Equal Error Rates (EER) than the conventional UBM approach for 3, 10, and 30 seconds long test utterances, and also for channel mismatch conditions. The proposed method is also compared with the i-vector approach. The three-cluster model achieved the best performance with a 12.4% relative EER reduction in average, compared to the i-vector method. Statistical significance of the results are also given.
Źródło:
Archives of Acoustics; 2017, 42, 1; 127-135
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biometric speech signal processing in a system with digital signal processor
Autorzy:
Marciniak, T.
Weychan, R.
Stankiewicz, A.
Dąbrowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/200794.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biometry
speech processing
digital signal processor
Gaussian mixture models
vector quantization
Opis:
This paper presents an analysis of issues related to the fixed-point implementation of a speech signal applied to biometric purposes. For preparing the system for automatic speaker identification and for experimental tests we have used the Matlab computing environment and the development software for Texas Instruments digital signal processors, namely the Code Composer Studio (CCS). The tested speech signals have been processed with the TMS320C5515 processor. The paper examines limitations associated with operation of the realized embedded system, demonstrates advantages and disadvantages of the technique of automatic software conversion from Matlab to the CCS and shows the impact of the fixed-point representation on the speech identification effectiveness.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2014, 62, 3; 589-594
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fire Detection Methods Based on Various Color Spaces and Gaussian Mixture Models
Autorzy:
Munshi, Amr
Powiązania:
https://bibliotekanauki.pl/articles/2123292.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
fire detection
fire pixels
fire-like pixels
color models
Gaussian mixture models
Opis:
Fire disasters are very serious problems that may cause damages to ecological systems, infrastructure, properties, and even a threat to human lives; therefore, detecting fires at their earliest stage is of importance. Inspired by the technological advancements in artificial intelligence and image processing in solving problems in different applications, this encourages adopting those technologies in reducing the damage and harm caused by fire. This study attempts to propose an intelligent fire detection method by investigating three approaches to detect fire based on three different color models: RGB, YCbCr, and HSV are presented. The RGB method is applied based on the relationship among the red, green and blue values of pixels in images. In the YCbCr color model, image processing and machine learning techniques are used for morphological processing and automatic recognition of fire images. Whereas for the HSV supervised machine learning techniques are adopted, namely decision rule and Gaussian mixture model (GMM). Further, the expectation maximization (EM) algorithm is deployed for the GMM parameters estimation. The three proposed models were tested on two data sets, one of which contains fire images, the other consists of non-fire images with some having fire-like colors to test the efficiency of the proposed methods. The experimental results showed that the overall accuracies on two data sets for the RGB, YCbCr, and HSV methods were satisfactory and were efficient in detecting outdoor and indoor fires.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 3; 197--214
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enhancement in Bearing Fault Classification Parameters Using Gaussian Mixture Models and Mel Frequency Cepstral Coefficients Features
Autorzy:
Atmani, Youcef
Rechak, Said
Mesloub, Ammar
Hemmouche, Larbi
Powiązania:
https://bibliotekanauki.pl/articles/177335.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
bearing faults
Gaussian mixture models
Mel frequency cepstral coefficients
feature extraction
diagnosis
Opis:
Last decades, rolling bearing faults assessment and their evolution with time have been receiving much interest due to their crucial role as part of the Conditional Based Maintenance (CBM) of rotating machinery. This paper investigates bearing faults diagnosis based on classification approach using Gaussian Mixture Model (GMM) and the Mel Frequency Cepstral Coefficients (MFCC) features. Throughout, only one criterion is defined for the evaluation of the performance during all the cycle of the classification process. This is the Average Classification Rate (ACR) obtained from the confusion matrix. In every test performed, the generated features vectors are considered along to discriminate between four fault conditions as normal bearings, bearings with inner and outer race faults and ball faults. Many configurations were tested in order to determinate the optimal values of input parameters, as the frame analysis length, the order of model, and others. The experimental application of the proposed method was based on vibration signals taken from the bearing datacenter website of Case Western Reserve University (CWRU). Results show that proposed method can reliably classify different fault conditions and have a highest classification performance under some conditions.
Źródło:
Archives of Acoustics; 2020, 45, 2; 283-295
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Voice Conversion Based on Hybrid SVR and GMM
Autorzy:
Song, P.
Jin, Y.
Zhao, L.
Zou, C.
Powiązania:
https://bibliotekanauki.pl/articles/177748.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
voice conversion
support vector regression
Gaussian mixture models
F0 prediction
speaker-specific information
Opis:
A novel VC (voice conversion) method based on hybrid SVR (support vector regression) and GMM (Gaussian mixture model) is presented in the paper, the mapping abilities of SVR and GMM are exploited to map the spectral features of the source speaker to those of target ones. A new strategy of F0 transfor- mation is also presented, the F0s are modeled with spectral features in a joint GMM and predicted from the converted spectral features using the SVR method. Subjective and objective tests are carried out to evaluate the VC performance; experimental results show that the converted speech using the proposed method can obtain a better quality than that using the state-of-the-art GMM method. Meanwhile, a VC method based on non-parallel data is also proposed, the speaker-specific information is investigated us- ing the SVR method and preliminary subjective experiments demonstrate that the proposed method is feasible when a parallel corpus is not available.
Źródło:
Archives of Acoustics; 2012, 37, 2; 143-149
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On an Improvement of the Model-Based Clustering Method
O pewnej modyfikacji w metodzie taksonomii opartej na modelach mieszanych
Autorzy:
Witek, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/906293.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Model-based clustering (MBC)
Gaussian mixture models
EM algorithm
MLE
MAP
BIC
conjugate prior
Opis:
W artykule przedstawiona została modyfikacja metody taksonomii opartej na modelach mieszanych, w przypadku gdy niemożliwym staje się oszacowanie parametrów modelu za pomocą algorytmu EM. Gdy liczba obiektów przypisanych do klasy jest mniejsza niż liczba zmiennych opisujących te obiekty, niemożliwym staje się oszacowanie parametrów modelu. By uniknąć tej sytuacji estymatory największej wiarygodności zastępowane są estymatorami o największym prawdopodobieństwie a posteriori. Wybór modelu o najlepszej parametryzacji i stosownej liczbie klas dokonywany jest wówczas za pomocą zmodyfikowanej statystyki BIC.
An improvement o f the model-based clustering (MBC) method in the case when EM algorithm fails as a result o f singularities is the basic aim o f this paper. Replacement o f the maximum likelihood (MLE) estimator by a maximum a posteriori (MAP) estimator, also found by the EM algorithm is proposed. Models with different number o f components are compared using a modified version o f BIC, where the likelihood is evaluated at the MAP instead o f MLE. A highly dispersed proper conjugate prior is shown to avoid singularities, but when these are not present it gives similar results to the standard method o f MBC.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of parameters of Gaussian mixture models by a hybrid method combining a self-adaptive differential evolution with the EM algorithm
Estymacja parametrów modeli mieszanin rozkładów normalnych przy pomocy metody hybrydowej łączącej samoadaptacyjną ewolucję różnicową z algorytmem EM
Autorzy:
Kwedlo, W.
Powiązania:
https://bibliotekanauki.pl/articles/88410.pdf
Data publikacji:
2014
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
mieszaniny rozkładów normalnych
ewolucja różnicowa
algorytm EM
grupowanie danych
Gaussian mixture models
differential evolution
expectation maximization
model-based clustering
Opis:
In the paper the problem of learning of Gaussian mixture models (GMMs) is considered. A new approach based on hybridization of a self-adaptive version of differential evolution (DE) with the classical EM algorithm is described. In this approach, called DEEM, the EM algorithm is run until convergence to fine-tune each solution obtained by the mutation and crossover operators of DE. To avoid the problem with parameter representation and infeasible solutions we use a method in which the covariance matrices are encoded using their Cholesky factorizations. In a simulation study GMMs were used to cluster synthetic datasets differing by a degree of separation between clusters. The results of experiments indicate that DE-EM outperforms the standard multiple restart expectation-maximization algorithm (MREM). For datasets with high number of features it also outperforms the state of-the-art random swap EM (RSEM).
W pracy poruszono problem uczenia modeli mieszanin rozkładów normalnych. Zaproponowano nowe podejście, nazwane DE-EM, oparte na hybrydyzacji samoadaptacyjnego algorytmu ewolucji różnicowej i klasycznego algorytmu EM. W nowej metodzie rozwiązanie otrzymane jako wynik operatorów mutacji i krzyżowania jest poddawane optymalizacji lokalnej, prowadzonej aż do momentu uzyskania zbieżności, przez algorytm EM. Aby uniknąć problemu z reprezentacją macierzy kowariancji i niedopuszczalności rozwiązań użyto metody, w której macierze kowariancji są kodowane przy pomocy dekompozycji Cholesky’ego. W badaniach symulacyjnych modele mieszanin rozkładów normalnych zastosowano do grupowania danych syntetycznych. Wyniki eksperymentów wskazują, że metoda DE-EM osiąga lepsze wyniki niż standardowa technika wielokrotnego startu algorytmu ˙ EM. Dla zbiorów danych z dużą liczbą cech, metoda osiąga lepsze wyniki niż technika losowej wymiany rozwiązań połączona z algorytmem EM.
Źródło:
Advances in Computer Science Research; 2014, 11; 109-123
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical Classification of Environmental Noise Sources Considering the Acoustic Signature of Vehicle Pass-Bys
Autorzy:
Valero, X.
Alias, F.
Powiązania:
https://bibliotekanauki.pl/articles/176616.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
acoustic signature
environmental noise monitoring
Gaussian mixture models
hierarchical classification
mel-frequency cepstral coefficients (MFCC)
sound classification
traffic noise
vehicle pass-by
Opis:
This work is focused on the automatic recognition of environmental noise sources that affect humans’ health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore, although considering all the aforementioned noise sources, this paper especially focuses on improving the recognition of road noise events by taking advantage of the perceived noise differences along the road vehicle pass-by (which may be divided into different phases: approaching, passing and receding). To that effect, a hierarchical classification scheme that considers these phases independently has been implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%, which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are performed to compare the system performance with human recognition ability. The results reveal that, although an expert human listener can achieve higher recognition accuracy than the proposed system, the latter outperforms the non-trained listener in 10% in average.
Źródło:
Archives of Acoustics; 2012, 37, 4; 423-434
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Construction and verification of mathematical model of mass spectrometry data
Konstrukcja i weryfikacja matematycznego modelu danych widm masowych
Autorzy:
Plechawska-Wójcik, M.
Powiązania:
https://bibliotekanauki.pl/articles/408752.pdf
Data publikacji:
2013
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Maldi-Tof mass spectrometry
Gaussians
Gaussian mixture models
SVM-RFE classification
spektrometria masowa Maldi-Tof
rozkłady Gaussa
mieszaniny rozkładów Gaussa
klasyfikacja SVM-RFE
Opis:
The article presents issues concerning construction, adjustment and implementation of mass spectrometry mathematical model based on Gaussians and Mixture Models and the mean spectrum. This task is essential to the analysis and it needs specification of many parameters of the model.
Artykuł przedstawia kwestie związane z konstrukcją, dopasowaniem i implementacją modelu matematycznego widm masowych opartego o rozkłady normalne i mieszaniny rozkładów oraz o widmo średnie. To zadanie jest kluczowe dla analizy, wymaga też określenia wielu parametrów modelu.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2013, 1; 9-14
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies