- Tytuł:
- Riesz means of Fourier transforms and Fourier series on Hardy spaces
- Autorzy:
- Weisz, Ferenc
- Powiązania:
- https://bibliotekanauki.pl/articles/1217804.pdf
- Data publikacji:
- 1998
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
Hardy spaces
p-atom
atomic decomposition
interpolation
Fourier transforms
Riesz means - Opis:
- Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from $H_p(ℝ)$ to $L_p(ℝ)$ (1/(α+1) < p < ∞) and is of weak type (1,1), where $H_p(ℝ)$ is the classical Hardy space. As a consequence we deduce that the Riesz means of a function $⨍ ∈ L_1(ℝ)$ converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on $H_p(ℝ)$ whenever 1/(α+1) < p < ∞. Thus, in case $⨍ ∈ H_p(ℝ)$, the Riesz means converge to ⨍ in $H_p(ℝ)$ norm (1/(α+1) < p < ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.
- Źródło:
-
Studia Mathematica; 1998, 131, 3; 253-270
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki