- Tytuł:
-
Sprzętowa implementacja algorytmów dekompozycji lingwistycznej opartych na podziale bazy wiedzy w układzie FPGA
Hardware implementation of linguistic de-composition algorithms based on partitioning the knowledge base in the FPGA chip - Autorzy:
- Wyrwoł, B.
- Powiązania:
- https://bibliotekanauki.pl/articles/972152.pdf
- Data publikacji:
- 2009
- Wydawca:
- Stowarzyszenie Inżynierów i Techników Mechaników Polskich
- Tematy:
-
funkcja przynależności
reguła rozmyta
reguła sprzeczna
relacja rozmyta
baza wiedzy
dekompozycja relacyjna
dekompozycja lingwistyczna
system regułowy FITA
system relacyjny FATI
wnioskowanie przybliżone
FPGA
membership function
fuzzy rule
inconsistent rule
fuzzy relation
knowledge base
relational decomposition
linguistic decomposition
First Inference Then Aggregation system (FITA)
First Aggregation Then Inference system (FATI)
fuzzy inference - Opis:
-
Układowe realizacje systemów wnioskowania przybliżonego wymagają często znacznych nakładów. Zmniejszenie ich jest możliwe poprzez zastosowanie metody dekompozycji Gupty i przedstawieniu systemu jako struktury hierarchicznej. W celu wyeliminowania jej niekorzystnych własności konieczny jest wstępny podział bazy wiedzy. Zaproponowana została metoda najlepszego wyboru wykorzystująca wybrane algorytmy podziału, zaimplementowana w sprzętowym systemie wnioskowania przybliżonego FPGA-FIS.
The hardware cost of a fuzzy inference system can be reduced using the Gupta's relational decomposition technique [1]. The system can be represented as a hierarchical architecture that comprises a set of Single Input Single Output subsystems (Fig. 1). The decomposition has some disadvantages, computation of the global relation ℜ is an extremely time-consuming process and a large memory is necessary to store it. They can be eliminated if projection is expanded on linguistic level and decomposition is used for the knowledge base (1), (Fig. 2) [2]. The projection operation (on relational or linguistic level) in some cases can lead to inevitable loss of information because of its approximate nature [3]. To avoid the inference error (the output result is more fuzzy than that obtained in the classical system architecture (3)) methods for partitioning (5) the knowledge base KB[Y , XK,? , X1] into p subbases without inconsistent rules (4) are proposed [4]. In Section 3 the methods based on partitioning towards a defined input linguistic variable (Fig. 3) and elimination of the inconsistent rules (Fig. 4) are described [5, 6]. The algorithms are simple and fast but the results are not optimal in all cases (hardware cost depends on the number of subsystems p, Tab. 1). Thus, the method of the best choice is proposed and implemented in the FPGA fuzzy inference system as a DMU (Decomposition Management Unit) module (Fig. 6). - Źródło:
-
Pomiary Automatyka Kontrola; 2009, R. 55, nr 7, 7; 511-514
0032-4140 - Pojawia się w:
- Pomiary Automatyka Kontrola
- Dostawca treści:
- Biblioteka Nauki