Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "finite-element analysis" wg kryterium: Temat


Tytuł:
Biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions
Autorzy:
Prochor, P.
Piszczatowski, Sz.
Sajewicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/307287.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FEM
biomateriały
implant
finite element analysis
direct skeletal attachment
implants
Opis:
Purpose: The study was aimed at biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System (LPOFS) designed to combine the advantages of interference-fit and threaded solutions. Methods: Three cases, the LPOFS (designed), the OPRA (threaded) and the ITAP (interference-fit) implants were studied. Von-Mises stresses in bone patterns and maximal values generated while axial loading on an implant placed in bone and the force reaction values in contact elements while extracting an implant were analysed. Primary and fully osteointegrated connections were considered. Results: The results obtained for primary connection indicate more effective anchoring of the OPRA, however the LPOFS provides more appropriate stress distribution (lower stress-shielding, no overloading) in bone. In the case of fully osteointegrated connection the LPOFSs kept the most favourable stress distribution in cortical bone which is the most important long-term feature of the implant usage and bone remodelling. Moreover, in fully bound connection its anchoring elements resist extracting attempts more than the ITAP and the OPRA. Conclusions: The results obtained allow us to conclude that in the case of features under study the LPOFS is a more functional solution to direct skeletal attachment of limb prosthesis than the referential implants during short and long-term use.
Źródło:
Acta of Bioengineering and Biomechanics; 2016, 18, 4; 21-31
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An evaluation of the efficiency of endpoint control on the correction of scoliotic curve with brace : A case study
Autorzy:
Karimi, Mohammad
Rabczuk, Timon
Luthfi, Mauludin
Pourabbas, Babak
Esrafilian, Amir
Powiązania:
https://bibliotekanauki.pl/articles/949744.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
skolioza
FEM
metoda elementów brzegowych
scoliosis
brace
finite element analysis
boundary condition
Opis:
The use of braces is one of the conservative treatment approaches recommended for scoliotic subjects. However, the main question posted here is how to improve the efficiency of braces to control the scoliotic curve or to decrease its progression. The aim of this study was to evaluate the efficiency of various boundary conditions (endpoint control) of brace on the correction of scoliotic curves. Method: CT scan images of a scoliotic subject, with double lumbar and thoracic curves, was used to produce 3d model of spine. The correction of spine (decrease in scoliotic curves) was determined following the use of transverse (lateral-to-medial direction) and the combination of transverse and vertical (upward-directed force, traction) forces on spine in Abaqus software. The effects of pelvic fixation (pelvic basket of a brace) on both sides (basket enclosed pelvic in both sides), on one side (basket enclosed the pelvis in only one side), and fixation of lumbar (part of the brace encircled the lumbar area) were evaluated in this study. Results: The results of this study showed that the effect of vertical forces (traction) was more than that of transverse force. Moreover, the combination of vertical and transverse forces on lumbar and thoracic curves correction was more than that of other conditions (only transverse forces). The best correction was achieved with lumbar fixation and with combination of vertical and transverse forces. Conclusions: The use the combination of vertical and transverse forces may be suggested to correct the scoliotic curve. Moreover, the efficiency of lumbar fixation in frontal plane seems to be more than pelvic fixation to correct scoliotic curve. The outputs of this study can be used to design new braces for scoliotic subjects.
Źródło:
Acta of Bioengineering and Biomechanics; 2019, 21, 2; 3-10
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of the plate location used in clavicle fractures during shoulder abduction and flexion movements: a finite element analysis
Autorzy:
Calisal, E.
Ugur, L.
Powiązania:
https://bibliotekanauki.pl/articles/306467.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
obojczyk
złamanie
FEM
acromioclavicular joint
clavicle fractures
plate position
finite element analysis
Opis:
Plate fixation is a commonly used surgical method in clavicular fracture treatment. The main purpose of this treatment is making the painless shoulder girdle and bring the functions to the optimum level. Plate fixation position still remains controversial. We aimed to investigate the effect of the plate position in clavicle midshaft fractures during shoulder movements. Methods: A normal anatomical shoulder joint was modeled using computed tomography images. A fracture line was created on the clavicle. Plate was placed superior to the clavicle in group 1 and anterior in group 2. The impacts of joints, plates, screws, ligaments and clavicle have been shown during 150° flexion and abduction movements of the shoulder by finite element analysis. Analyzes were made non-linear using ANSYS (version 18) and the same boundary conditions were applied in all models. Results: The load values in the plate, screws, ligaments, and clavicle were higher in group 1 than group 2 during abduction and flexion movements. Especially the load on the ac ligament was excessive. Load value in the glenohumeral joint was found similar both groups. The load values in the flexion movement were higher than the abduction movement in both groups. Conclusions: Anterior clavicle plating provides less stress on material and shoulder girdle, compared to superior plating, during shoulder abduction and flexion movements.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 4; 41-46
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of elliptical deformation of the acetabulum on the stress distribution in the components of hip resurfacing surgery
Autorzy:
Stempin, R.
Dragan, S. Ł.
Kulej, M.
Filipiak, J.
Dragan, S.
Powiązania:
https://bibliotekanauki.pl/articles/306854.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
alloplastyka stawu biodrowego
rozkład naprężeń
FEM
hip resurfacing
stress distribution
finite element analysis
Opis:
Hip resurfacing surgery is a matter of controversy. Some authors present very good late results of 99% survival outcomes. However, national records of implants point to the series of complications connected with biomechanical flaws of the implant. These results implicate the experimental research on biomechanical properties of HRS. The aim of the research was to define the nature of cooperation between the components of hip resurfacing surgery (HRS) and the influence of the deformation of acetabulum, the size of the implant and the nature of the bone surface on the stress distribution in the acetabulum and the femoral component. The calculations were run with the use of the finite element method (FEM), using the ANSYS bundle for this purpose. Four decrete models of the studied system were made: a model with the elements of the system connected with glue, a perfect spherical model with cooperating surfaces, a model reflecting an elliptical deformation of the acetabulum, and a model with different sizes of the implant. The results indicate that the stress values obtained for models with the ideally spherical acetabulum cannot cause significant deformation of cooperating implants. In the case of loads of the elliptically deformed acetabulum significant point stress concentrations can be observed in the spots of joint. The size of the acetabular and femoral components of HRS has influence on the stress concentration on the internal surface of the acetabulum as well as in the bone tissue surrounding the madrel of the femoral component. Moreover, physical properties of the base surface surrounding the HRS components have influence on the size of stress in the acetabulum and the femoral component.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 4; 35-41
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of pullout strength in different designs of pedicle screws for osteoporotic bone quality using finite element analysis
Autorzy:
Yang, Shih-Chieh
Liu, Pao-Hsin
Tu, Yuan-Kun
Powiązania:
https://bibliotekanauki.pl/articles/306201.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
osteoporoza
cement
FEM
osteoporosis
cement augmentation
pedicle screw
pullout strength
finite element analysis
Opis:
The purpose of this study was to investigate pullout strength of three types of pedicle screws with and without cement augmentation in osteoporotic bone using finite element analysis. Methods: Twelve 3D finite element models were created to investigate the effect of pullout strength when comparing between pedicle screw types and bone cement clouds. The bottom side of bone block model was constrained and U-shape head was applied 1 mm in direction of longitudinal axis of pedicle screw to perform pullout resistance. The material properties of the FEA was set as linear elastic, homogenous, isotropic condition. The element sensitivity of convergence testing has been performed and variation of the sequential analytical results was less than 3%. Results: The results showed that the maximum total reaction force (133.8 N) was detected in the model of cannulated pedicle screw combined with a central pin with 4 ml cement augmentation, but, in contrast, the minimum total reaction force (106.8 N) was discovered in the model of cannulated pedicle screw without cement. A strong relationship (r = 0.9626) is found in comparison with the biomechanical results between pullout strength of sawbone testing and reaction forces of the FEA. Conclusions: The study concludes that the cannulated pedicle screw can not only provide an inner guider for cement flow and increase bending resistance (deflection effect) when a central pin is selected, but also can improve the pullout strength in the osteoporotic bone to add cement augmentation. The design of the cannulated pedicle screw is suggested for poor bone quality to change pullout failure.
Źródło:
Acta of Bioengineering and Biomechanics; 2019, 21, 3; 57-66
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Digital Image Correlation Techniques for Strain Measurement in a Variety of Biomechanical Test Models
Autorzy:
Hensley, S.
Christensen, M.
Small, S.
Archer, D.
Lakes, E.
Rogge, R.
Powiązania:
https://bibliotekanauki.pl/articles/307418.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FEM
cyfrowa korelacja obrazów
wskaźnik naprężenia
DIC
finite element analysis
digital image correlation
strain gauges
Opis:
Purpose: Previous biomechanical studies have estimated the strains of bone and bone substitutes using strain gages. However, applying strain gages to biological samples can be difficult, and data collection is limited to a small area under the strain gage. The purpose of this study was to compare digital image correlation (DIC) strain measurements to those obtained from strain gages in order to assess the applicability of DIC technology to common biomechanical testing scenarios. Methods: Compression and bending tests were conducted on aluminum alloy, polyurethane foam, and laminated polyurethane foam specimens. Simplified single-legged stance loads were applied to composite and cadaveric femurs. Results Results: Showed no significant differences in principal strain values (or variances) between strain gage and DIC measurements on the aluminum alloy and laminated polyurethane foam specimens. There were significant differences between the principal strain measurements of the non-laminated polyurethane foam specimens, but the deviation from theoretical results was similar for both measurement techniques. DIC and strain gage data matched well in 83.3% of all measurements in composite femur models and in 58.3% of data points in cadaveric specimens. Increased variation in cadaveric data was expected, and is associated with the well-documented variability of strain gage analysis on hard tissues as a function of bone temperature, hydration, gage protection, and other factors specific to cadaveric biomechanical testing. Conclusions: DIC techniques provide similar results to those obtained from strain gages across standard and anatomical specimens while providing the advantages of reduced specimen preparation time and full-field data analysis.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 3; 187-195
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities
Autorzy:
Bogu, V. P.
Kumar, Y. R.
Khanara, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/307070.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ciśnienie wewnątrzczaszkowe
FEM
implant
intracranial pressure
finite element analysis
beyond mid-line defect
fixation points
Opis:
Purpose: This computational study explores modelling and finite element study of the implant under Intracranial pressure (ICP) conditions with normal ICP range (7 mm Hg to 15 mm Hg) or increased ICP (>I5 mm Hg). The implant fixation points allow implant behaviour with respect to intracranial pressure conditions. However, increased fixation points lead to variation in deformation and equivalent stress. Finite element analysis is providing a valuable insight to know the deformation and equivalent stress. Methods: The patient CT data (Computed Tomography) is processed in Mimics software to get the mesh model. The implant is modelled by using modified reverse engineering technique with the help of Rhinoceros software. This modelling method is applicable for all types of defects including those beyond the middle line and multiple ones. It is designed with eight fixation points and ten fixation points to fix an implant. Consequently, the mechanical deformation and equivalent stress (von Mises) are calculated in ANSYS 15 software with distinctive material properties such as Titanium alloy (Ti6Al4V), Polymethyl methacrylate (PMMA) and polyether-ether-ketone (PEEK). Results: The deformation and equivalent stress results are obtained through ANSYS 15 software. It is observed that Ti6Al4V material shows low deformation and PEEK material shows less equivalent stress. Among all materials PEEK shows noticeably good result. Conclusions: Hence, a concept was established and more clinically relevant results can be expected with implementation of realistic 3D printed model in the future. This will allow physicians to gain knowledge and decrease surgery time with proper planning.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 1; 125-131
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bone conduction stimulation of the otic capsule: a finite element model of the temporal bone
Autorzy:
Borkowski, Paweł
Marek, Piotr
Niemczyk, Kazimierz
Lachowska, Magdalena
Kwacz, Monika
Wysocki, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/306896.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FEM
kośc skroniowa
ucho wewnętrzne
bone conduction
finite element analysis
temporal bone
otic capsule
cochlea
inner ear
Opis:
Bone conduction stimulation applied on the otic capsule may be used in a conductive hearing loss treatment as an alternative to the bone conduction implants in clinical practice. A finite element study was used to evaluate the force amplitude and direction needed for the stimulation. Methods: A finite element model of a female temporal bone with a precisely reconstructed cochlea was subjected to a harmonic analysis assuming two types of stimulation. At first, the displacement amplitude in the form of air conduction stimulation was applied on the stapes footplate. Then the force amplitude was applied on the otic capsule in the form of bone conduction stimulation. The two force directions were considered: 1) the primary direction, when a typical opening is performed during mastoidectomy, and was coincident with the axis of an imaginary cone, inscribed in the opening, and 2) the direction perpendicular to the stapes footplate. The force amplitude was set so that the response from the cochlea corresponded to the result of air conduction stimulation applied on the stapes footplate. Results: The amplitude and phase of vibration and the volume displacement on the round window membrane were considered as well as vibrations of the basilar membrane, spiral lamina, and promontory. Conclusions: The cochlear response was comparable for the two types of stimulation. The efficiency of bone conduction stimulation depended on the force direction. For the primary direction, the force was a few times smaller than for the direction perpendicular to the stapes footplate.
Źródło:
Acta of Bioengineering and Biomechanics; 2019, 21, 3; 75-86
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of middle ear disorder in round-window stimulation using a finite element human ear model
Autorzy:
Zhou, Kai
Liu, Houguang
Yang, Jianhua
Zhao, Yu
Rao, Zhushi
Yang, Shanguo
Powiązania:
https://bibliotekanauki.pl/articles/307472.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
implant
symulacja
FEM
middle ear implant
round-window stimulation otosclerosis
otitis media
hearing loss
finite-element analysis
Opis:
The aim of this work was to study the effect of middle ear disorder on round window (RW) stimulation, so as to provide references for the optimal design of RW stimulation type middle ear implants (MEIs). Methods: A human ear finite-element model was built by reverse engineering technique based on micro-computed tomography scanning images of human temporal bone, and was validated by three sets of comparisons with experimental data. Then, based on this model, typical disorders in otosclerosis and otitis media were simulated. Finally, their influences on the RW stimulation were analyzed by comparison of the displacements of the basilar membrane. Results: For the otosclerosis, the stapedial abnormal bone growth severely deteriorated the equivalent sound pressure of the RW stimulation at higher frequencies, while the hardening of ligaments and tendons prominently decreased the RW stimulation at lower frequencies. Besides, among the hardening of the studied tissues, the influence of the stapedial annular ligament’s hardening was much more significant. For the otitis media, the round window membrane (RWM)’s thickening mainly decreased the RW stimulation’s performance at lower frequencies. When the elastic modulus’ reduction of the RWM was considered at the same time especially for the acute otitis media, it would raise the lower-frequency performance of the RW stimulation. Conclusions: The influence of the middle ear disorder on the RW stimulation is considerable and variable, it should be considered during the design of the RW stimulation type MEIs.
Źródło:
Acta of Bioengineering and Biomechanics; 2019, 21, 1; 3-12
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Elastic constants influence on the L4-L5-S1 annuli fibrosus behavior, a probabilistic finite element analysis
Autorzy:
Jaramillo, H. E.
Garcia, J. J.
Powiązania:
https://bibliotekanauki.pl/articles/307431.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FEM
hiperelastyczność
krążek międzykręgowy
analiza probabilistyczna
finite element analysis
hyperelastic
range of motion
intervertebral discs
probabilistic analysis
sensitivity factor
Opis:
A probabilistic finite element (FE) analysis of the L4-L5 and L5-S1 human annulus fibrosus (AF) was conducted to obtain a better understanding of the biomechanics of the AF and to quantify its influence on the range of motion (ROM) of the L4-L5 and L5-S1 segments. Methods: The FE models were composed of the AF and the upper and lower endplates. The AF was represented as a continuous material composed of a hyperelastic isotropic Yeoh matrix reinforced with two families of fibers described with an exponential energy function. The caudal endplate was fully restricted and 8 Nm pure moment was applied to the cranial endplate in flexion, extension, lateral flexion and axial rotation. The mechanical constants were determined randomly based on a normal distribution and average values reported. Results: Results of the 576 models show that the ROM was more sensitive to the initial stiffness of the fibers rather than to the stiffening coefficient represented in the exponential function. The ROM was more sensitive to the input variables in extension, flexion, axial rotation and lateral bending. The analysis showed an increased probability for the L5-S1 ROM to be higher in flexion, extension and axial rotation, and smaller in lateral flexion, with respect to the L4-L5 ROM. Conclusions: An equation was proposed to obtain the ROM as a function of the elastic constants of the fibers and it may be used to facilitate the calibration process of the human spine segments and to understand the influence of each elastic constant on the ROM.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 4; 3-12
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the influence of the transducer and its coupling layer on round window stimulation
Autorzy:
Liu, H.
Xu, D.
Yang, J.
Yang, S.
Cheng, G.
Huang, X.
Powiązania:
https://bibliotekanauki.pl/articles/306655.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
słuch
stymulacja
przetwornik
RW
FEM
implantable middle ear hearing device
round window stimulation
transducer
coupling layer
finite element analysis
Opis:
Purpose: In this work, a finite element study is proposed to evaluate the effects of the transducer and its coupling layer on the performance of round window (RW) stimulation. Methods: Based on a set of micro-computer tomography images of a healthy adult’s right ear and reverse engineering technique, a coupled finite-element model of the human ear and the transducer was constructed and verified. Then, the effect of the cross-section of the transducer, the elastic modulus of the coupling layer, the mass of the transducer, and the preload of the transducer were studied. Results: The increase of the transducer’s cross-section area deteriorates the RW stimulation, especially at the lower frequencies. This adverse effect of the cross-section area’s increase of the transducer can be reduced by adding a coupling layer between the transducer and the RW. However, the coupling layer’s improvement on the RW stimulation is reduced with the increase of its elastic modulus. Moreover, the mass loading of the transducer decreases the RW stimulation’s performance mainly at higher frequencies and applying a static preload on the transducer enhances its hearing compensating performance at higher frequencies. Conclusions: The influence of the transducer’s mass, the mass of the transducer, the applied static preload and the properties of the coupling layer must be taken into account in the design of the RW stimulation type implantable middle ear hearing device.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 2; 103-111
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical response at peri-implant mandibular bone for variation of pore characteristics of implants: A Finite Element Study
Autorzy:
Sarkar, Sulagna
Sahu, Tikeshwar Prasad
Datta, Arijit
Chandra, Nimesh
Chakraborty, Arindam
Datta, Pallab
Majumder, Santanu
Chowdhury, Amit Roy
Powiązania:
https://bibliotekanauki.pl/articles/307131.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
implant stomatologiczny
uszczelnianie
FEM
porous dental implant
pore size
percentage porosity
bone-implant interface
finite element analysis
stress and strain
Opis:
In this paper, the mechanical response of generic dental implants having calculated porosities with varying pore-sizes has been evaluated. The purpose of this study was to compare the developed stress-strain of designed porous implants (i.e., stress at the implant and strain at the peri-implant bone) with that of the non-porous implant. Methods: 3D model of a mandible was prepared from CT scan data and nine generic dental implant models have been designed having 10%, 20%, and 30% porosity with 500, 700, and 900 micron pore size along with a non-porous model for carrying out FE analyses. First, failure analyses of implants, under a biting force of 250 N have been performed. Next, the remaining implants have been further evaluated under average compressive chewing load of 100 N, for mechanical responses at bone-implant interface. Results: Von Mises strain at the peri-implant mandibular bone increases with the increase in percentage porosity of the implant material and maximum implant stress remained much below the yield stress level. Conclusion: Implant stiffness and compressive strength vary as a function of porosity and pore size. Strain obtained on the peri-implant bone is sufficient enough to facilitate better bone growth with the 700 micron pore size and 30% porosity, thus reducing the effect of stress shielding.
Źródło:
Acta of Bioengineering and Biomechanics; 2019, 21, 2; 83-93
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A numerical comparative analysis of ChM and Fixion nails for diaphyseal femur fractures
Autorzy:
Ivanov, D.
Barabash, Y.
Barabash, A.
Powiązania:
https://bibliotekanauki.pl/articles/306299.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FEM
gwóźdź śródszpikowy
kość udowa
sztywność
model 3D
finite element analysis
intramedullary nail
femur
effective stress
stiffness
3D model
Opis:
Purpose: Today intramedullary locked nails are widespread in treatment of diaphyseal long bone fractures of the lower limb. However, such nails have a number of drawbacks: complexity and duration of the installation, high axial stiffness, as well as the failure of locking screws and nail body. Expandable nails such as Fixion have several advantages over lockable ones. They can be quickly installed without the need of reaming and provide sufficient stabilization of the fracture. However, many studies show their low stability under torsional loads. Methods: In this paper, geometric characteristics of Fixion nail were investigated. Bone-nail systems (with Fixion and locked nail) under the influence of three types of loads were numerically studied. Two types of diaphyseal femoral fractures (type A and B in accordance with AO/ASIF classification) were examined. Results: It was revealed that Fixion nail provides axial stiffness of 489 N/mm for the fractures studied. Expandable nail showed higher compression at fragments junction than locked nail. Torsional stability of Fixion nail was also high. Corrosion was found on inner surface of Fixion nail. Conclusions: Fixion nail showed high stability under influence of the three loads studied. Corrosion on the internal wall of the nail may indicate its relatively low resistance to saline.
Źródło:
Acta of Bioengineering and Biomechanics; 2016, 18, 3; 73-81
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Coupled Smoothed Finite Element-Boundary Element Method for Structural-Acoustic Analysis of Shell
Autorzy:
Tian, W.
Yao, L.
Li, L.
Powiązania:
https://bibliotekanauki.pl/articles/177260.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
SFEM
smoothed finite element method
FEM
finite element method
BEM
boundary element method
structural-acoustic analysis
Opis:
Nowadays, the finite element method (FEM) – boundary element method (BEM) is used to predict the performance of structural-acoustic problem, i.e. the frequency response analysis, modal analysis. The accuracy of conventional FEM/BEM for structural-acoustic problems strongly depends on the size of the mesh, element quality, etc. As element size gets greater and distortion gets severer, the deviation of high frequency problem is also clear. In order to improve the accuracy of structural-acoustic problem, a smoothed finite-element/boundary-element coupling procedure (SFEM/BEM) is extended to analyze the structural-acoustic problem consisting of a shell structure interacting with the cavity in this paper, in which the SFEM and boundary element method (BEM) models are used to simulate the structure and the fluid, respectively. The governing equations of the structural-acoustic problems are established by coupling the SFEM for the structure and the BEM for the fluid. The solutions of SFEM are often found to be much more accurate than those of the FEM model. Based on its attractive features, it was decided in the present work to extend SFEM further for use in structural-acoustic analysis by coupling it with BEM, the present SFEM/BEM is implemented to predict the vehicle structure-acoustic frequency response analysis, and two numerical experiments results show that the present method can provide more accurate results compared with the standard FEM/BEM using the same mesh. It indicates that the present SFEM/BEM can be widely applied to solving many engineering noise, vibration and harshness (NVH) problems with more accurate solutions.
Źródło:
Archives of Acoustics; 2017, 42, 1; 49-59
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the effect of projectile impact angle on the puncture of a steel plate using the finite element method in abaqus software
Autorzy:
Rosłaniec, Kuba
Powiązania:
https://bibliotekanauki.pl/articles/2097430.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
dynamic analysis
FEM
Finite Element Method
ductile damage
Abaqus
Opis:
This paper deals with the punctureability of a steel plate by a projectile at different angles of attack. The effect of the projectile angle on the force required to penetrate a plate made of A36 steel is presented using Finite Element Method calculation software. Using Abaqus software, a dynamic model of a projectile striking a plate was modelled and the force required to penetrate a 5 mm thick steel plate was presented. The intro-duction gives an overview of the genesis of the topic and a brief historical background. The chapter on numerical analysis presents the numerical model used and how the simulation was modelled. In the conclusions, a summary of the results was formulated and conclusions were drawn regarding the observations and insights of the analysis. The force required to penetrate the plate was observed to increase with increasing projectile angle of attack and it was found that, as the angle of the plate increased, the force required to penetrate increased.
Źródło:
Applied Computer Science; 2022, 18, 1; 56--69
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies