- Tytuł:
- Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method
- Autorzy:
-
Guo, L.-X
Li, R.
Zhang, M. - Powiązania:
- https://bibliotekanauki.pl/articles/307246.pdf
- Data publikacji:
- 2016
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
kręgosłup lędźwiowy
poroelastyczność
FEM
lumbar spine
poroelastic finite element model
intermittent compressive load
permeability of cartilage endplate - Opis:
- Purpose: This study is to reveal the deformation of intervertebral disc (IVD), the stress distribution of solid phase and liquid phase, the variation of fluid flux and flow velocity in lumbar spine and the influence of different permeability parameters on them under intermittent compressive loading. Methods: A poroelastic FEM of L4-L5 is assigned with different permeability parameters to analyze the deformation, stress distribution and fluid convection under intermittent compressive loads. Results: The results show that the pore pressure of IVD decreases with time, but the effective stress increases under intermittent compressive loads. The axial and radial strain will increase and fluid loss will recover at a more rapid rate if the permeability of endplate increases during unloading period. The velocity vectors show that most of the liquid in the disc flows into vertebrae through endplates and only a small quantity of liquid flows through the annulus fibrosus at the loading step, however, at the unloading step, almost all the liquid flowing into IVD is through the endplates. Conclusions: The changing rate of pore pressure and effective stresses of nucleus pulposus and annulus fibrosus with higher permeability is smaller than that with smaller permeability. The degenerated endplate (with low permeability) yields high flow velocity decreasing gradient, which might impede liquid inflowing/outflowing smoothly through the endplates. The fluid flowing velocity in loading phase is faster than that in unloading phase, so a short resting time can relieve fatigue, but could not recover to the original liquid condition in IVDs.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2016, 18, 2; 19-29
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki