Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "estimation algorithm" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Multivariate kernel density estimation with a parametric support
Autorzy:
Jarnicka, J.
Powiązania:
https://bibliotekanauki.pl/articles/255530.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
density estimation
kernel
bandwidth
kernel density estimator
EM algorithm
Opis:
We consider kernel density estimation in the multivariate case, focusing on the use of some elements of parametric estimation. We present a two-step method, based on a modification of the EM algorithm and the generalized kernel density estimator, and compare this method with a couple of well known multivariate kernel density estimation methods.
Źródło:
Opuscula Mathematica; 2009, 29, 1; 41-55
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Method of Colour Segmentation in Two Dimensional Images
Metody segmentacji kolorów w obrazach dwuwymiarowych
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/904923.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
colour segmentation
EM algorithm
non-parametric density estimation
pixel clustering
Opis:
The paper is divided into two parts. In the first part an overview of some selected methods of segmenting colours in two dimensional images is given. In the second part a new algorithm is proposed. The new algorithm is different from other algorithms due to its stress on accuracy of colour classes, the smallest possible number of colour classes (conditionally on paramameter choice) and due to smaller stress on the small number of eventual segments. The algorithm performance is assessed through applications to the segmentation a couple of colourful images.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2004, 175
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parameter estimation for Weibull distribution with right censored data using EM algorithm
Zastosowanie algorytmu maksymalizacji wartości oczekiwanej do estymacji parametrów rozkładu Weibulla w przypadku danych obciętych prawostronnie
Autorzy:
Ferreira, L. A.
Silva, J. L.
Powiązania:
https://bibliotekanauki.pl/articles/301264.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
algorytm EM
estymacja parametrów
estymator największej wiarygodności
niezawodność
EM algorithm
parameter estimation
maximum likelihood estimate
reliability
Opis:
Metoda największej wiarygodności (MLE) służy do estymacji parametrów modelu statystycznego dla zadanych danych. Metoda ta pozwala na estymację nieznanych parametrów modelu statystycznego. Parametry te otrzymuje się poprzez maksymalizację funkcji wiarygodności rozważanego modelu. Często w praktyce metoda ta może jednak nastręczać trudności związane z wielomodalnością funkcji wiarygodności oraz niemożnością uzyskania jawnych analitycznych rozwiązań równań wiarygodności. Równania takie można jedynie rozwiązywać za pomocą metod numerycznych. Trudności te dobrze ilustruje estymacja parametrów rozkładu Weibulla z wykorzystaniem metody największej wiarygodności wykonywana w oparciu o prawostronnie cenzurowane dane z eksploatacji. Rozwiązanie przedstawione w niniejszej pracy opiera się na zastosowaniu algorytmu maksymalizacji wartości oczekiwanej (EM). Możliwości aplikacyjne proponowanej metodyki badano na przykładzie danych eksploatacyjnych uzyskanych z przedsiębiorstwa petrochemicznego, dotyczących awarii pięciu pomp odśrodkowych.
The maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical model for given data. This method allows us to estimate the unknown parameters of a statistical model. These parameters are obtained by maximizing the likelihood function of the model in question. In many practical situations the likelihood function is associated with complex models and the likelihood equation has no explicit analytical solution, it is only possible to have its resolution through numerical methods. The estimation of the parameters of the Weibull distribution by maximum-likelihood method based on information from a historical record with right censored data shows this difficulty. The solution presented in this article entails using the Expectation-Maximization (EM) algorithm. Actual data from the historical record of 5 centrifugal pumps failures of a petrochemical company were analyzed for application of the methodology.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 2; 310-315
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies