Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Algorytm EM" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Learning finite Gaussian mixtures using differential evolution
Uczenie skończonych mieszanin rozkładów normalnych przy pomocy algorytmu ewolucji różnicowej
Autorzy:
Kwedlo, W.
Powiązania:
https://bibliotekanauki.pl/articles/341041.pdf
Data publikacji:
2010
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
mieszaniny rozkładów normalnych
ewolucja różnicowa
algorytm EM
Gaussian mixtures
differential evolution
EM algorithm
Opis:
In the paper the problem of parameter estimation of finite mixture of multivariate Gaussian distributions is considered. A new approach based on differential evolution (DE) algorithm is proposed. In order to avoid problems with infeasibility of chromosomes our version of DE uses a novel representation, in which covariance matrices are encoded using their Cholesky decomposition. Numerical experiments involved three version of DE differing by the method of selection of strategy parameters. The results of experiments, performed on two synthetic and one real dataset indicate, that our method is able to correctly identify the parameters of the mixture model. The method is also able to obtain better solutions than the classical EM algorithm. Keywords: Gaussian mixtures, differential evolution, EM algorithm.
W artykule rozważono problem uczenia parametrów skończonej mieszaniny wielowymiarowych rozkładów normalnych. Zaproponowano nową metodę uczenia opartą na algorytmie ewolucji różnicowej. W celu uniknięcia problemów z niedopuszczalnością chromosomów algorytm ewolucji różnicowej wykorzystuje nową reprezentację, w której macierze kowariancji są reprezentowane przy pomocy dekompozycji Cholesky’ego. W eksperymentach wykorzystano trzy wersje algorytmu ewolucji różnicowej różniące się metodą˛ doboru parametrów. Wyniki eksperymentów, przeprowadzonych na dwóch syntetycznych i jednym rzeczywistym zbiorze danych, wskazują że zaproponowana metoda jest w stanie poprawnie identyfikować parametry modelu. Metoda ta osiąga również lepsze wyniki niż klasyczyny algorytm EM.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2010, 5; 19-33
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parameter estimation for Weibull distribution with right censored data using EM algorithm
Zastosowanie algorytmu maksymalizacji wartości oczekiwanej do estymacji parametrów rozkładu Weibulla w przypadku danych obciętych prawostronnie
Autorzy:
Ferreira, L. A.
Silva, J. L.
Powiązania:
https://bibliotekanauki.pl/articles/301264.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
algorytm EM
estymacja parametrów
estymator największej wiarygodności
niezawodność
EM algorithm
parameter estimation
maximum likelihood estimate
reliability
Opis:
Metoda największej wiarygodności (MLE) służy do estymacji parametrów modelu statystycznego dla zadanych danych. Metoda ta pozwala na estymację nieznanych parametrów modelu statystycznego. Parametry te otrzymuje się poprzez maksymalizację funkcji wiarygodności rozważanego modelu. Często w praktyce metoda ta może jednak nastręczać trudności związane z wielomodalnością funkcji wiarygodności oraz niemożnością uzyskania jawnych analitycznych rozwiązań równań wiarygodności. Równania takie można jedynie rozwiązywać za pomocą metod numerycznych. Trudności te dobrze ilustruje estymacja parametrów rozkładu Weibulla z wykorzystaniem metody największej wiarygodności wykonywana w oparciu o prawostronnie cenzurowane dane z eksploatacji. Rozwiązanie przedstawione w niniejszej pracy opiera się na zastosowaniu algorytmu maksymalizacji wartości oczekiwanej (EM). Możliwości aplikacyjne proponowanej metodyki badano na przykładzie danych eksploatacyjnych uzyskanych z przedsiębiorstwa petrochemicznego, dotyczących awarii pięciu pomp odśrodkowych.
The maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical model for given data. This method allows us to estimate the unknown parameters of a statistical model. These parameters are obtained by maximizing the likelihood function of the model in question. In many practical situations the likelihood function is associated with complex models and the likelihood equation has no explicit analytical solution, it is only possible to have its resolution through numerical methods. The estimation of the parameters of the Weibull distribution by maximum-likelihood method based on information from a historical record with right censored data shows this difficulty. The solution presented in this article entails using the Expectation-Maximization (EM) algorithm. Actual data from the historical record of 5 centrifugal pumps failures of a petrochemical company were analyzed for application of the methodology.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 2; 310-315
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of regression parameters of two dimensional probability distribution mixtures
Estymacja parametrów regresji mieszanki dwuwymiarowych rozkładów prawdopodobieństwa
Autorzy:
Sitek, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/592694.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
EM algorithm
Least squares method for an implicite interdependence
Mixture regression model
Algorytm EM
Metoda najmniejszych kwadratów dla zależności niejawnych
Mieszanki regresji
Opis:
We use two methods of estimation parameters in a mixture regression: maximum likelihood (MLE) and the least squares method for an implicit interdependence. The most popular method for maximum likelihood esti-mation of the parameter vector is the EM algorithm. The least squares method for an implicit interdependence is based solving systems of nonlinear equations. Most frequently used method in the estimation of parameters mixtures regression is the method of maximum likelihood. The article presents the possibility of using a different the least squares method for an implicit interdependence and compare it with the maximum likelihood method. We compare accuracy of two methods of estimation by simulation using bias: root mean square error and bootstrapping standard errors of estimation.
Do estymacji parametrów mieszanek regresji stosujemy dwie metody: metodę największej wiarygodności oraz metodę najmniejszych kwadratów dla zależności niejawnych. Najbardziej popularną metodą polegającą na maksymalizacji funkcji wiarygodności jest algorytm EM. Metoda najmniejszych kwadratów dla zależności niejawnych polega na rozwiązaniu układu równań nieliniowych. Najczęściej stosowaną metodą estymacji parametrów mieszanek regresji jest metoda największej wiarygodności. W artykule pokazano możliwość zastosowania innej metody najmniejszych kwadratów dla zależności niejawnych. Obie metody porównujemy symulacyjnie, używając obciążenia estymatora, pierwiastka błędu średniokwadratowego estymatora oraz bootstrapowe błędy standardowe.
Źródło:
Studia Ekonomiczne; 2016, 304; 30-46
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal Allocation of the Sample in the Poisson Item Count Technique
Optymalna alokacja próby w badaniu cechy drażliwej
Autorzy:
Bernardelli, Michał
Kowalczyk, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/660031.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
alokacja optymalna
zmienna ukryta
algorytm EM
cecha drażliwa
pytania pośrednie
eksperyment z listą
optimal allocation
latent variable
EM algorithm
sensitive question
indirect questioning
Poisson item count technique
Opis:
Pośrednie metody ankietowania stanowią podstawowe narzędzie stosowane w przypadku pytań drażliwych. Artykuł nawiązuje do nowej, pośredniej metody zaproponowanej w pracy Tiana i wsp. (2014) i dotyczy optymalnej alokacji próby między grupę badaną i kontrolną. W przypadku gdy alokacji dokonuje się w oparciu o estymatory metodą momentów, rozwiązanie optymalne nie nastręcza trudności i zostało podane w pracy Tiana i wsp. (2014). Jednak to estymacja metodą największej wiarogodności ma lepsze własności, w związku z czym wyznaczenie alokacji optymalnej na jej podstawie jest zadaniem, którego rozwiązanie wydaje się mieć większe znaczenie praktyczne. Zadanie to nie jest trywialne, gdyż w przypadku omawianej metody pośredniej drażliwa zmienna badana ma charakter ukryty i jest zmienną nieobserwowalną. Wzór explicite na wariancję estymatora największej wiarogodności nieznanej frakcji cechy drażliwej nie jest dostępny, a sam estymator wyznaczyć można, używając odpowiednich algorytmów numerycznych. Do określenia optymalnej alokacji próby w oparciu o estymatory NW wykorzystane zostały symulacje Monte Carlo oraz iteracyjny algorytm EM
Indirect methods of questioning are of utmost importance when dealing with sensitive questions. This paper refers to the new indirect method introduced by Tian et al. (2014) and examines the optimal allocation of the sample to control and treatment groups. If determining the optimal allocation is based on the variance formula for the method of moments (difference in means) estimator of the sensitive proportion, the solution is quite straightforward and was given in Tian et al. (2014). However, maximum likelihood (ML) estimation is known from much better properties, therefore determining the optimal allocation based on ML estimators has more practical importance. This problem is nontrivial because in the Poisson item count technique the study sensitive variable is a latent one and is not directly observable. Thus ML estimation is carried out by using the expectation‑maximisation (EM) algorithm and therefore an explicit analytical formula for the variance of the ML estimator of the sensitive proportion is not obtained. To determine the optimal allocation of the sample based on ML estimation, comprehensive Monte Carlo simulations and the EM algorithm have been employed.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2018, 3, 335; 35-47
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies