Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "brain-computer interface" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Interfejs mózg-komputer wykorzystujący sygnały EEG
Brain-Computer Interface based on EEG signals
Autorzy:
Marek, L.
Plechawska-Wójcik, M.
Powiązania:
https://bibliotekanauki.pl/articles/98060.pdf
Data publikacji:
2016
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
Brain Computer Interfaces
BCI
SVEEP
CSP
EEG
Brain-Computer Interface
Opis:
Artykuł opisuje test aplikacji interfejs mózg-komputer z wykorzystaniem paradygmatu SSVEP. Przy realizacji projektu dokonano przeglądu dostępnych metod badania aktywności mózgu oraz wybrano odpowiednie urządzenie do akwizycji. Kolejne etapy działania interfejsu, czyli przetwarzanie oraz klasyfikacja, opracowano i zaprezentowano w środowisku OpenViBE. Ostatecznie, ocenę użyteczności i sprawności zaprezentowano na zaprojektowanej aplikacji.
The aim of the article is to test the brain-computer interface application using the SSVEP paradigm. During the realization of the project various methods of recording brain activity were tested, and the suitable acquisition device was chosen. Consecutive stages of the interface operation, which are data processing and classification, were presented in the OpenVibe environment. Finally, the usefulness and efficiency were estimated using a designed application.
Źródło:
Journal of Computer Sciences Institute; 2016, 2; 64-69
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain-computer interface as measurement and control system The review paper
Autorzy:
Rak, R. J.
Kołodziej, M.
Majkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/221747.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
EEG
brain-computer interface
feature extraction
feature selection
measurement and control
Opis:
In the last decade of the XX-th century, several academic centers have launched intensive research programs on the brain-computer interface (BCI). The current state of research allows to use certain properties of electromagnetic waves (brain activity) produced by brain neurons, measured using electroencephalographic techniques (EEG recording involves reading from electrodes attached to the scalp - the non-invasive method - or with electrodes implanted directly into the cerebral cortex - the invasive method). A BCI system reads the user's "intentions" by decoding certain features of the EEG signal. Those features are then classified and "translated" (on-line) into commands used to control a computer, prosthesis, wheelchair or other device. In this article, the authors try to show that the BCI is a typical example of a measurement and control unit.
Źródło:
Metrology and Measurement Systems; 2012, 19, 3; 427-444
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Low-cost evoked potentials detection for brain computer-interfaces
Autorzy:
Jukiewicz, M.
Cysewska-Sobusiak, A.
Powiązania:
https://bibliotekanauki.pl/articles/97604.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
brain-computer interface
detection of evoked potentials
EEG
signal processing
MATLAB
Opis:
Evoked potentials are one of the brain's electrical activity types. They appear on the human scalp as a result of a registration of an external stimulus (e.g. an appearance or a change of a sound, a flash of light or an image). Generally, they are used in medical diagnosis, but they also may be used in brain-computer interfaces. In this chapter a laboratory set for the acquisition and analysis of evoked potentials is described. The main part of this set is a photostimulator consisting of sixteen LEDs and the ATmega 328 microcontroller. The software created by the authors allows for: connection between EEG device, stimulator and computer, input stimulus control, output signal filtering and its classification. The presented set may support a process of brain-computer interface design.
Źródło:
Computer Applications in Electrical Engineering; 2015, 13; 102-110
1508-4248
Pojawia się w:
Computer Applications in Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie maszyny wektorów wspierających (SVM) do klasyfikacji sygnału EEG na użytek interfejsu mózg-komputer
Implementation of support vector machine for classification of EEG signal for brain-computer interface
Autorzy:
Kołodziej, M.
Majkowski, A.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/155968.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
BCI
interfejs mózg-komputer
EEG
maszyna wektorów wspierających
SVM
brain-computer interface
support vector machine
Opis:
W artykule przedstawiono wykorzystanie maszyny wektorów wspierających (SVM) na użytek interfejsów mózg-komputer (BCI). W opracowanych algorytmach jako cechy sygnału EEG wykorzystano jego wariancję. Przedstawiono wyniki badań związanych z wykorzystaniem sieci SVM jako klasyfikatora. Eksperymenty przeprowadzono przy użyciu różnego rodzaju funkcji jądra.
Implementing communication between man and machine by use of EEG signals is one of the biggest challenges in the signal theory. Such communication could improve the standard of living of people with severe motor disabilities. Some disable persons cannot move, however they can think about moving their arms, legs and this way produce stable motor-related EEG signals. These signals can be used to construct BCI systems. However, the proper interpretation of the EEG signals is a very difficult task. There are three main stages in EEG signal analysis: feature extraction, feature selection and classification. The main aim of the paper is to implement a support vector machine as a classifier for the brain-computer interface. The proposed algorithm uses the EEG signal variance in the frequency range 8-30Hz. Experiments were conducted with use of different kernel functions for the SVM classifier. The best results were achieved for the quadratic polynomial kernel function. The classification error for testing data was 0.13.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 12, 12; 1546-1548
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
BCI w VR: imersja sposobem na sprawniejsze wykorzystywanie interfejsu mózg-komputer
BCI in VR: an immersive way to make the brain-computer interface more efficient
Autorzy:
Piszcz, Adrianna
Powiązania:
https://bibliotekanauki.pl/articles/41206132.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
BCI
interfejs mózg-komputer
EEG
VR
rzeczywistość wirtualna
rysowanie
brain-computer interface
virtual reality
painting
Opis:
Celem eksperymentów było zbadanie czy rzeczywistość wirtualna usprawnia korzystanie z interfejsu mózg-komputer. Do badania wykorzystano autorski system informatyczny, który umożliwia rysowanie kształtów na ekranie komputera. Przygotowane stanowisko badawcze składa się z komputera z niezbędnym oprogramowaniem, z mobilnych gogli wirtualnej rzeczywistości Esperanza EMV300 ze smartfonem Samsung Galaxy A40 oraz interfejsu mózg-komputer Emotiv Epoc. Wykazano, że imersja pozwala zwiększyć poziom koncentracji i sprawniej korzystać z interfejsu mózg-komputer. Taki rodzaj zanurzenia w rzeczywistość wirtualną może zapoczątkować całą serię aplikacji obsługiwanych w sposób intuicyjny, za pomocą komend myślowych, w wykreowanym wirtualnym świecie.
The purpose of the experiments was to investigate whether virtual reality improves the use of the brain-computer interface. The study used a custom computer system that allows drawing shapes on the computer screen. The prepared test stand consists of a computer with the necessary software, Esperanza EMV300 mobile virtual reality goggles with a Samsung Galaxy A40 smartphone and Emotiv Epoc braincomputer interface. It was shown that immersion allows to increase the level of concentration and use the brain-computer interface more efficiently. This kind of immersion in virtual reality could initiate a whole series of applications operated intuitively, via thought commands, in a created virtual world.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2021, 1; 5-10
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Event-related desynchronization/synchronization-based volitional cursor control in a two-dimensional center-out paradigm
Autorzy:
Huang, D.
Qian, K.
Oxenham, S.
Fei, D. -Y.
Bai, O.
Powiązania:
https://bibliotekanauki.pl/articles/1396737.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
brain-computer interface
BCI
two-dimensional
two-dimensional BCI control
event-related synchronization
event-related desynchronization
EEG
Opis:
To achieve a reliable two-dimensional control by noninvasive EEG-based brain-computer interface (BCI), users are typically required to receive long-term training to learn effective regulation of their brain rhythmic activities, and to maintain sustained attention during the operation. We proposed a two-dimensional BCI using event-related desynchronization and event-related synchronization associated with human natural behavior so that users need neither long-term training nor high mental loads to maintain concentration. In this study, we intended to further investigate the performance of the proposed BCI associated with either physical movement or motor imagery with an online two-dimensional centerout cursor control paradigm. Model adaptation method was employed for better decoding of human movement intention from EEG activities. The results demonstrated an effective center-out cursor control: as high as 77.1% during online control with physical movement and 57.3% with motor imagery. It suggests that two-dimensional BCI control can be achieved without long-term training.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 2; 97-108
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ redukcji liczby elektrod w systemie BCI na ocenę aktywności elektrycznej mózgu
The impact of reducing the number of electrodes in the BCI system on evaluation of the brain electrical activity
Autorzy:
Oskwarek, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/155070.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
interfejs mózg-komputer
BCI
elektroencefalografia
EEG
aktywność mózgu
zagadnienie odwrotne EEG
Brain-Computer Interface
electroencephalography
brain activity
EEG inverse problem
Opis:
W artykule zaprezentowano wyniki analiz dotyczących aktywności elektrycznej mózgu ukierunkowanych na możliwość redukcji liczby elektrod w badaniu EEG wykonywanym na potrzeby asynchronicznego interfejsu mózg-komputer (BCI). Stosowne obliczenia potwierdzają zasadność wyboru zestawu 8 elektrod (tzn. F3, T7, C3, Cp1, C4, T8, F4 i Cz) w systemie BCI, wykorzystującym wyspecjalizowany wzmacniacz EEG firmy g.tec, skonstruowanym w IETiSIP Politechniki Warszawskiej.
The subject of the paper is evaluation of the brain electrical activity associated with imagining some specific motor actions for the needs of asynchronous Brain-Computer Interface (BCI) [1-4]. These analysis, called EEG inverse problems, can be useful among others to optimize the number and placement of electrodes. Dedicated calculations were carried out using the algorithm sLORETA (Section 3) [5-13]. The basis of the BCI interface is the ability to detect differences between the considered classes of tasks. In the case of asynchronous interfaces, the evaluation of brain activity in the frequency domain provides much more conclusive information than the time-domain analysis. These indicate that, although the best conditions for synchronous neuronal activity are in the range of delta waves (up to 4 Hz), the biggest differences between the compared classes are apparent in the alpha band (8-12 Hz) in the central parts of the cortex (Section 5; pic. 2,3). Moreover, the performed calculations show no significant difference in the location of the brain activity sources for the results obtained using the set of 32 electrodes and after the fourfold reduction in the number of electrodes. Thus, they confirm the relevance of the set of 8 electrodes (i.e. F3, T7, C3, CP1, C4, T8, F4, and Cz) in the BCI system constructed and used in the Department of Information and Measuring Systems of the Warsaw University of Technology (Sections 6,7; Fig. 5; Tab. 2).
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 9, 9; 718-721
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie potencjałów mózgowych P300 do sterowania awatarem
Implementation of P300 potentials for controlling an avatar
Autorzy:
Majkowski, A.
Kołodziej, M.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/154837.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
BCI
interfejs mózg-komputer
sygnały EEG
potencjał P300
awatar
brain-computer interface
EEG
P300 potential
avatar
Opis:
W artykule przedstawiono system BCI umożliwiający sterowanie awatarem w wirtualnym świecie gry Second Life z wykorzystaniem potencjału mózgowego P300. Do budowy systemu autorzy wykorzystali ogólnodostępne oprogramowanie BCI2000 oraz własne oprogramowanie umożliwiające sterowanie zewnętrzną aplikacją poprzez symulację naciśnięć przycisków klawiatury. Użytkownik w komfortowy sposób może sterować kierunkiem ruchu awatara. System jest uniwersalny i po drobnych modyfikacjach pozwala na sterowanie dowolnym urządzeniem. Docelowo autorzy chcą wykorzystać autorskie oprogramowanie do sterowania kierunkiem ruchu wózka inwalidzkiego.
In the paper there is presented a BCI system which enables control of avatar movement in the virtual world of the Second Life game. The system consists of two PCs connected via LAN. On the first computer the BCI200 system was launched with a modified Dochin board (Fig. 5). The interface enables choosing the direction of avatar movement (forward, backward, right, left). Next, the BCI2000 system sends the information about the avatar movement direction via UDP / IP protocol to the second computer. On that computer a program created by the authors is running. Its task is to receive information about the movement direction, and then to send the appropriate commands, in the form of simulated keystrokes, to the game. The program was written in C # (Visual Studio 2005). An important advantage of the proposed interface is that a user does not have to learn the proper generation of the EEG signal. With only one calibration session it was possible to collect features of P300 potential for a user and correctly train the classifier. The system is universal and after minor modifications can control any device. Ultimately, the authors want to use the software to control the direction of wheelchair movement.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 4, 4; 352-354
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies