Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dynamic data" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Impulse Response Functions in the Dynamic Stochastic General Equilibrium Vector Autoregression Model
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/2076473.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamic stochastic general equilibrium vector autoregression
DSGE-VAR
impulse response functions
marginal data density
Opis:
The model considered in the paper is defined as VAR with the prior distribution for parameters generated by the dynamic stochastic general equilibrium (DSGE) model. The degree of economic restrictions in the DSGE- VAR model is controlled by the weighting parameter. In the paper there is investigated the impact of the weighting parameter prior specifications for the posterior shape of impulse response functions (IRFs). In case of conditional models the paths of IRFs highly depend on the value of the weighting parameter that is set arbitrary. When considering full estimation with different prior types, means and gradual change in the dispersion the posterior time paths of IRFs are similar in models with high values of the marginal data densit
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2016, 2; 93-114
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty praktyczne
An Estimated General Equilibrium Model and Vector Autoregression. Practical Issues
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/423053.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
brzegowa gęstość obserwacji
specyfikacja rozkładu a priori
zbieżność MCMC
dynamic stochastic general equilibrium model
Bayesian inference
marginal data density
prior specification
convergence diagnostics of MCMC
Opis:
Model DSGE-VAR składa się z dwóch modeli wektorowej autoregresji: pierwszy z nich jest aproksymacją liniowego rozwiązania estymowanego modelu równowagi ogólnej i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Opracowanie jest poświęcone szczegółowemu omówieniu aspektów praktycznych, zawiązanych z modelami DSGE-VAR. Główny nacisk został położony na zagadnienia specyfikacji a priori dla parametru wagowego: rozpatrzono szereg modeli warunkowych oraz modele z estymowanym parametrem wagowym, po przyjęciu alternatywnych rozkładów a priori: jednostajnego, przesuniętego gamma i zmodyfikowanego rozkładu beta. Oszacowanie szeregu modeli warunkowych pozwala na ujawnienie znacznej zmienności logarytmu brzegowej gęstości obserwacji implikujących wrażliwość czynników Bayesa, istotnie zmieniających się w odpowiedzi na niewielkie zmiany specyfikacji rozkładu a priori dla parametru wagowego. Estymacja modelu pełnego pozwala na optymalne ustalenie rzędu opóźnienia wektorowej autoregresji oraz sprawdzenie wrażliwości wnioskowania a posteriori o parametrze wagowym w zależności od typu i rozproszenia rozkładu a priori. W drugiej części opracowania omówiono sposoby oceny stabilności numerycznej w modelach DSGE-VAR.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates the linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. The main purpose of the paper is to present practical aspects of DSGE-VAR estimation, verification and comparison, based on the marginal data density. It can be obtained after considering conditional models or by estimation of fully specified models, after assuming uniform, generalised gamma and modified beta distributions. The conditional models lead to serious variability of the Bayes factors that has little economic interpretation. Posterior inference for the weighting parameter from fully estimated models is less sensitive to its prior specification. In the second part of the paper author discusses convergence diagnostics used for checking stability of MCMC algorithms.
Źródło:
Przegląd Statystyczny; 2013, 60, 4; 477-498
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies