Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "remote areas" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
A Machine Learning Model for Improving Building Detection in Informal Areas: A Case Study of Greater Cairo
Autorzy:
Taha, Lamyaa Gamal El-deen
Ibrahim, Rania Elsayed
Powiązania:
https://bibliotekanauki.pl/articles/2055780.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
multi-source image fusion
random forest
support vector machine
DEM extraction
unplanned unsafe areas
remote sensing
Opis:
Building detection in Ashwa’iyyat is a fundamental yet challenging problem, mainly because it requires the correct recovery of building footprints from images with high-object density and scene complexity. A classification model was proposed to integrate spectral, height and textural features. It was developed for the automatic detection of the rectangular, irregular structure and quite small size buildings or buildings which are close to each other but not adjoined. It is intended to improve the precision with which buildings are classified using scikit learn Python libraries and QGIS. WorldView-2 and Spot-5 imagery were combined using three image fusion techniques. The Grey-Level Co-occurrence Matrix was applied to determine which attributes are important in detecting and extracting buildings. The Normalized Digital Surface Model was also generated with 0.5-m resolution. The results demonstrated that when textural features of colour images were introduced as classifier input, the overall accuracy was improved in most cases. The results show that the proposed model was more accurate and efficient than the state-of-the-art methods and can be used effectively to extract the boundaries of small size buildings. The use of a classifier ensample is recommended for the extraction of buildings.
Źródło:
Geomatics and Environmental Engineering; 2022, 16, 2; 39--58
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies