Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Monstein, C." wg kryterium: Autor


Wyświetlanie 1-9 z 9
Tytuł:
Correlation between Radio Flux (10.7 cm) and Sunspot Number Based on Statistical Properties
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1189949.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
radio region
solar flare
Coronal Mass Ejections (CMEs)
Opis:
Statistical properties of solar radio burst radio type II and III of this work will be highlighted. One of the best advantages of using the radio method is that it allows high quality images within an arc second resolution and different frequencies actually cover different layers of the solar atmosphere. Statistical studies of both bursts are required to obtain such observational constraints with sufficient statistical confidence. In the first part, the trend of both bursts from 2006-2011 is examined. We need to consider a few parameters such as a burst duration, drift rate, energy of the photon, and the structure of the burst. From (0.0 0.5) MHz/Sec, the data represent the highest slope with m = 1290.1685 km/MHz in average. In the range of (4.0 7.0) MHz/Sec, the range of CMEs velocity is less than 500km/Sec. The lowest CMEs velocity that can be observed is ~137 km/Sec. The relationship between both parameters is F10.7cm = 0.4568R + 73.8655. This work presents the first step toward an analytical model of statistics of solar radio burst information of average events as something crucial to the acceleration mechanism.
Źródło:
World Scientific News; 2016, 52; 70-80
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radio Observation of Coronal Mass Ejections (CMEs) Due to Flare Related Phenomenon on 7th March 2012
Autorzy:
Hamidi, Z. S.
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/412379.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Radio burst
solar flare
Coronal Mass Ejections (CMEs)
e-CALLISTO
Active Region 1429
Opis:
On March 7th, 2012, an active region AR1429 has unleashed 2 major X-class solar flares. This flare is accompanied by a Coronal Mass Ejections (CMEs) event. A pair of unusually large solar flares early March 7, 2012 generated a Coronal Mass Ejection that was expected to reach Earth around midday March 8. In this case we focused on the second explosion of solar flare. It is found that the indication of signal potentially drives Coronal Mass Ejections (CMEs). There are a few types solar burst that can be observed, which is (i) an individual type III (ii) a complex type III (iii) subtype an H type II solar burst and (iv) type IV solar burst. The duration of solar burst is start from 1:02 UT to 2:00 UT. We also compare our results with the Geostationary Operational Environmental Satellites (GOES) data. Overall, one hour duration with a strong intensity burst are exploded strongly within the period. The fast drift type III burst has continued until 1:28 UT is associated with the large X 5.4 -class solar flares at 1:25:05 UT. It is undeniable that solar flare plays an important role in the Sun-Earth connection due to sudden changes of strong magnetic fields in the Sun’s corona. From our analysis, one possible reason behind the formation of this very complex, long duration of this loop is the magnetic reconnection and disruption of the loops which is observed during flare maximum. Until now, there has been an increasing interest in the space weather program has stimulated interest in this issue. A new experimental approach by e-CALLISTO with 24 hours monitoring and further development of a model of the theory are hoping to meet the current knowledge about the Sun behaviour.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 3; 243-256
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solar Burst Type IV Signature Associated with Solar Prominences on 20th January 2016
Autorzy:
Hamidi, Z. S.
Hamzah, N.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1178518.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
solar burst
solar flare
type IV radio region
Opis:
Proceeding from close association between solar eruptions, flare and CMEs, we analyze between burst at 980 MHz to 1270 MHz, recorded at the Blein, Switzerland on 20th January 2016. This burst indicates the emission radiation from the Sun from numerous high energy electrons in active region AR2484 and AR2487 forming a large prominence in that particular area. Solar prominences usually occur in loop shape and can last for weeks or months. This event allows us to investigate the electron density and drift rate of solar burst type IV During that time the Sun has the moderate number of sunspots with 55.The radio sources responsibly for IV appear to expand spherically through the solar corona after eject on y solar flare. This event shows a strong radiation in radio region, but not in X-ray region. This burst intense radio phenomena that follow with solar flares. It has a wide band and fine structure. It can be considered as an intermediate fast drift burst (IMDs). This fiber burst has a negative drift rate where the drift is interpreted by the group velocity of the whistler-mode waves. This burst appears is single SRBT III for approximately within 7 minutes with starting time is 8.23 UT. This burst duration is longer compared to the other events. It can be considered as a IV because it begins at the same time as the explosive phase of solar flare. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. At the same time, the number of particles traveled a given path in reconnecting area falls exponentially with the increase of this path because of losses owing to a leaving of particles the acceleration volume due to drift.
Źródło:
World Scientific News; 2017, 70, 2; 111-121
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Space Weather: The Significance of e-CALLISTO (Malaysia) As One of Contributor of Solar Radio Burst Due To Solar Activity
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Ibrahim, Z. A.
Powiązania:
https://bibliotekanauki.pl/articles/411980.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
radio emission
solar radio burst
Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatories (CALLISTO)
solar flares
Coronal Mass Ejections (CMEs)
space weather
Opis:
The impact of solar activities indirectly affected the conditions of earth's climate and space weather in general. In this work, we will highlight a low cost project, however, potentially gives a high impact through a dedicated long-term and one of the most successful space weather project. This research is a part of an initiative of the United Nations together with NASA in order to support developing countries participating in „Western Science‟ research. At the beginning of 2007, the objective to monitor the solar activities (solar flares and Coronal Mass Ejections) within 24 hours all over the world has positively turned to reality. Realize how important for us to keep doing a research about the solar bursts, by using the new radio spectrometer, CALLISTO. This research is not only hoping to give a knowledge to the people about how the solar bursts are produced, the characteristics of every type of solar burst at the wide range (45 MHz to 870 MHz) but also the effect of the solar burst toward the Earth. By using the same CALLISTO spectrometer within the 45-870 MHz, designing and leading by Christian Monstein from ETH Zurich, Switzerland, this research project is the one of successful project under ISWI program. Malaysia becomes the 19th countries that involve this research. One of the advantages to start the solar monitoring in Malaysia is because our strategic location as equator country that makes possible to observing a Sun for 12 hours daily throughout a year. We strongly believe that Malaysia as one of contributor of solar activity data through E-CALLISTO network. This is a very good start for developing a radio astronomy in Malaysia.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 7; 37-44
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of the Electron Density and Drift Rate of Solar Burst Type III During 13th of May 2015
Autorzy:
Ali, M. O.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192997.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
radio region
solar burst
solar flare
type III
Opis:
During 13th of May 2015, the solar wind is very high velocity, which is 733 kms-1 as compared to 367.5 kms-1. It is believed that the plasma–magnetic field interactions in the solar corona can produce suprathermal electron populations over periods from tens of minutes to several hours, and the interactions of wave-particle and wave-wave lead to characteristic fine structures of the emission. An intense and broad solar radio burst type II was recorded by CALLISTO spectrometer from 20-85 MHz. Using data from a the Blein observatory, the complex structure of solar burst type III can also be found in the early stage of the formation of type III solar burst type event due to active region AR 12339. The drift rate of solar burst type III exceeds 1.0 MHz/s with 6.318 x1012 e/m3 a density of electron in the solar corona. There were also 2 groups of solar radio burst type III were observed. This CME was detected at 08:36 UT which is 1and ½ hour after the solar burst detected. This event shows a strong radiation in radio region, but not in X-ray region.
Źródło:
World Scientific News; 2016, 31; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relativistic Energy Associated with a Moving Fiber Burst Type μIV Associated with The Class A Solar Prominence
Autorzy:
Hamidi, Z. S.
Norsham, N. A. M.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1194133.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
solar burst
solar flare
type IV radio region
Opis:
The relativistic energy electron emission is found to occur only during proton events. Solar prominences usually occur in loop shape and can last for weeks or months. This event allows us to investigate the electron density and drift rate of solar burst type IV During 21st September 2015. During that time the Sun has the highest number of sunspots. The radio sources responsibly for Ivm appear to expand spherically through the solar corona after eject on y solar flare. This event shows a strong radiation in radio region, but not in X-ray region. This burst intense radio phenomena that follow with solar flares. It has a wide band structure from 1412-1428 MHz. It can be considered as an intermediate f drift burst (IMDs). This fiber burst has a negative drift rate where the drift is interpreted by the group velocity of the whistler-mode waves. Their bandwidth is approximately 2% of the emission frequency. The are accompanied a parallel-drift absorption band in the background continuum radiation. The occurrence of the event is interesting in many aspects which is also in ZSIS site. From the dynamic spectra of the CALLISTO, it can be observed that there a moving type IV burst. This burst appears is single SRBT III for approximately 16 minutes at 708UT till 716UT. This burst duration is longer compared to the other events. It can be considered as a Ivμ because it begins at the same time as the explosive phase of solar flare. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. At the same time, the number of particles traveled a given path in reconnecting area falls exponentially with increase of this path because of losses owing to a leaving of particles the acceleration volume due to drifts.
Źródło:
World Scientific News; 2016, 57; 11-20
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Formation of Fundamental Structure of Solar Radio Burst Type II Due X6.9 Class Solar Flare
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1190115.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
type II
radio region
X-ray region
solar flare
Coronal Mass Ejections (CMEs)
Opis:
A vigorous solar flare event marked on the spectrometer of the CALLISTO data, being one of the highest solar flare event that successfully detected. The formation of solar burst type II in meter region and their associated with X6. 9-class solar flares have been reported. The burst has been observed at the Blein Obsevatory, Switzerland, which detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) system in the range of 170-870 MHz in the two polarizations of left and right circular polarization. It occurred between 08:01 UT to 08:08 UT within 7 minutes. The Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory CALLISTO spectrometer is a solar dedicated spectrometer system that has been installed all over the world to monitor the Sun activity in 24 hours. The growth of this burst is often accompanied by abundance enhancement of particles which may take the form of multiple independent drifting bands or other forms of fine structure. Due to the results, the drift rate of this burst is 85.71 MHz s-1, which is considered as a fast drift rate. The burst detected using CALLISTO also being compared to results detected by X-ray GOES data. Both different electromagnetic spectrum shows the exact time. The observations of the burst being discussed in details.
Źródło:
World Scientific News; 2016, 35; 30-43
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption
Autorzy:
Ali, M. Omar
Shariff, N. N. M.
Hamidi, Z. S.
Husien, Nurul Hazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192085.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Coronal Mass Ejections (CMEs)
solar burst type III
magnetic filament
Opis:
During solar activity the energy particles of the sun released due to solar flare, Coronal Mass Ejections (CMEs), coronal heating as well as sunspot. Solar radio burst will be observed in the presence of solar activity such solar flare, CMEs and solar prominence as the indicator for those events to happen. During the peak of solar cycle, the filaments are present due to the active magnetic field and solar storm’s explosion. This type of solar radio burst normally can be seen in the phase of impulsive solar flare. Therefore, it is crucial to understand field line connectivity in flare and the access of flare accelerated particle to the earth. In this study, we highlighted on the observation of solar radio burst type III on 9th of May at 05:31 UT till 05:44 UT. The event was successfully recoded by e-CALLISTO using BLEINSW radio telescope. The Solar Radio Burst Type III that had been observed was related to the Coronal Mass Ejections and the mechanisms that trigger the events have been discussed. It is shown that the CMEs is believed to happen because of the magnetic filament that connected to active region (AR) 2339 was erupted, and combination of two wild filament produced a bright CMEs. Fortunately, the expanding cloud does not appear to be heading for earth.
Źródło:
World Scientific News; 2016, 37; 168-178
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies Group Type III Burst Form Type II Burst During Low activity
Autorzy:
Hamidi, Z. S.
Mokthtar, Fatin Nabila
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191365.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
X-ray region
radio region
solar burst
sun
sun type II
sun type III
Opis:
Using the e-CALLISTO network radio observations on 1st June 2015, we present an analysis of the complex type III and type II solar radio bursts during low activity. This event occurred on 1st July 2015 at 13:52 UT (complex solar burst type III) and 13:40 UT - 13:44 UT (solar burst type II). Solar burst type detected at (i) BIR, (ii) BLENSW, (iii) Essen, (iv) Glascow (v) Osra, (vi) Rwanda. The spectral shape consists of high flux densities at meter wavelengths. The energy going into plasma heating during each flare was estimated by computing the time evolution of the energy content of the thermal plasma and obtaining the peak value. This constitutes a lower limit to the thermal energy, since it does not account for the cooling of the plasma prior to this time nor to any heating at later times. It is also believed that the meter wavelength branch of the this type III spectrum may be attributable to second-phase accelerated electrons to form type II burst. There are four sunspots of the active regions (AR2355, AR2356, AR2357, and AR2358) during this event. The solar wind recorded during the event is 342.4 km/s and the density of the proton recorded is 4.1 protons/cm3. Moreover, the are some evidence that radio-quiet CMEs mostly came from the edges of the sun. The main goal of this study was to determine whether is there any possibilities that the radio burst can be formed even the Sun is at low activity and this event is one of the candidate events.
Źródło:
World Scientific News; 2016, 34; 121-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies