Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "contour method" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Bacilli bacterial cell image analysis using active contour segmentation with SVM classifier
Autorzy:
Bannigidad, Parashuram
Powiązania:
https://bibliotekanauki.pl/articles/1062913.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Active contour method
Bacillus
Bacillus subtilis
Bacterial cell image analysis
Cell classification
Cocobacilli
Diplobacilli
Palisades
SVM
Segmentation
Streptobacilli
Opis:
The main aim of the present study is to develop an automatic method to identify and classify the different cell types of bacilli bacterial cells in digital microscopic cell images using active contour method. Snakes, or active contours, are used widely in computer vision and machine learning applications, particularly to locate object boundaries. GLCM, HOG and LBP features are used to identify the arrangement of bacilli bacterial cells, namely, bacillus, cocobacilli, diplobacilli, palisades and streptobacilli using SVM classifier. The current methods rely on the subjective reading of profiles by a human expert based on the various manual staining methods. In this paper, it is proposed a method for bacilli bacterial cell classification by segmenting digital bacterial cell images using active contour model and extracting GLCM, HOG and LBP features. The experimental results proves that, the SVM classifier has yielded an overall accuracy of 97.2% with GLCM features, HOG features has yielded an accuracy of 74.8% and LBP features yielded 91.2% accuracy. The GLCM features with SVM classifier has got good classification results compared to HOG and LBP feature sets for bacilli bacteria cell types.
Źródło:
World Scientific News; 2019, 127, 3; 369-376
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies