Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mhamdi, Jamal El" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A cough-based COVID-19 detection system using PCA and machine learning classifiers
Autorzy:
Benmalek, Elmehdi
Mhamdi, Jamal El
Jilbab, Abdelilah
Jbari, Atman
Powiązania:
https://bibliotekanauki.pl/articles/38431179.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
COVID-19
cough recordings
machine learning
PCA
classification
Opis:
In 2019, the whole world is facing a health emergency due to the emergence of the coronavirus (COVID-19). About 223 countries are affected by the coronavirus. Medical and health services face difficulties to manage the disease, which requires a significant amount of health system resources. Several artificial intelligence-based systems are designed to automatically detect COVID-19 for limiting the spread of the virus. Researchers have found that this virus has a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we per-formed binary classification, distinguishing positive COVID patients from healthy controls. The records are collected from the Coswara Dataset, a crowdsourcing project from the Indian Institute of Science (IIS). After data collection, we extracted the MFCC from the cough records. These acoustic features are mapped directly to the Decision Tree (DT), k-nearest neighbor (kNN) for k equals to 3, support vector machine (SVM), and deep neural network (DNN), or after a dimensionality reduction using principal component analysis (PCA), with 95 percent variance or 6 principal components. The 3NN classifier with all features has produced the best classification results. It detects COVID-19 patients with an accuracy of 97.48 percent, 96.96 percent f1-score, and 0.95 MCC. Suggesting that this method can accurately distinguish healthy controls and COVID-19 patients.
Źródło:
Applied Computer Science; 2022, 18, 4; 96-115
1895-3735
2353-6977
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A cough-based COVID-19 detection with gammatone and Mel-frequency cepstral coefficients
Autorzy:
Benmalek, Elmehdi
El Mhamdi, Jamal
Jilbab, Abdelilah
Jbari, Atman
Powiązania:
https://bibliotekanauki.pl/articles/2203646.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
COVID-19
cough recordings
machine learning
mel-frequency cepstral coefficients
gammatone cepstral coefficients
feature selection
uczenie maszynowe
współczynniki mel-cepstralne
Opis:
Many countries have adopted a public health approach that aims to address the particular challenges faced during the pandemic Coronavirus disease 2019 (COVID-19). Researchers mobilized to manage and limit the spread of the virus, and multiple artificial intelligence-based systems are designed to automatically detect the disease. Among these systems, voice-based ones since the virus have a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we distinguished positive COVID patients from healthy controls. After the gammatone cepstral coefficients (GTCC) and the Mel-frequency cepstral coefficients (MFCC) extraction, we have done the feature selection (FS) and classification with multiple machine learning algorithms. By combining all features and the 3-nearest neighbor (3NN) classifier, we achieved the highest classification results. The model is able to detect COVID-19 patients with accuracy and an f1-score above 98 percent. When applying FS, the higher accuracy and F1-score were achieved by the same model and the ReliefF algorithm, we lose 1 percent of accuracy by mapping only 12 features instead of the original 53.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023214
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies