Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Martin's Axiom" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Boundaries, Martins Axiom, and (P)-properties in dual Banach spaces
Autorzy:
Granero, Antonio S.
Hernández, Juan M.
Powiązania:
https://bibliotekanauki.pl/articles/745016.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Boundaries, Martin's Axiom, equality \(Seq(X^{**})=X^{**}\), super-(P) property
Opis:
Let \(X\) be a~Banach space and \(\mathcal{S} \mathit{eq}(X^{**})\) (resp., \(X_{\aleph_0}\)) the subset of elements \(\psi\in X^{**}\) such that there exists a~sequence \((x_n)_{n\geq 1}\subset X\) such that \(x_n\to \psi\) in the \(w^*\)-topology of \(X^{**}\) (resp., there exists a~separable subspace \(Y\subset X\) such that \(\psi\in \smash{{\overline{Y}^{w^*}}}\)). Then: (i) if \(\operatorname{Dens}(X)\geq \aleph _1\), the property \(X^{**}=X_{\aleph _0}\) (resp., \(X^{**}=\mathcal{S}\mathit{eq}(X^{**})\)) is \(\aleph _1\)-determined, i.e., \(X\)~has this property iff \(Y\) has, for every subspace \(Y\subset X\) with \(\operatorname{Dens}(Y)=\aleph _1\); (ii) if \(X^{**}=X _{\aleph _0}\), \( (B(X^{**}),w^*)\) has countable tightness; (iii) under the Martin's axiom \(\mathit{MA} (\omega _1)\) we have \(X^{**}=\mathcal{S}\mathit{eq}(X^{**})\) iff \((B(X^*),w^*)\) has countable tightness and \(\\overline {\text {co}}(B)=\overline {\text {co}} ^{w^*}(K)\) for every subspace \(Y\subset X\), every \(w^*\)-compact subset \(K\) of \(Y^*\), and every boundary \(B\subset K\).
Źródło:
Commentationes Mathematicae; 2016, 56, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies