Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mixed Methods" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Metodyka dla analizy treści w projektach stosujących techniki text mining i rozwiązania CAQDAS piątej generacji
Autorzy:
Tomanek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2033749.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza treści
Mixed Methods
Big Data
techniki text mining
CAQDAS
Content Analysis
Mixed Methods Approach
Text Mining
Opis:
Projekty, w których przychodzi nam pracować z dużymi wolumenami danych tekstowych, pochodzących z rożnych źródeł i zapisanych w różnorodnych formatach, rodzą wiele dylematów natury metodologicznej, wymagają często niestandardowych decyzji i rozwiązań. W szczególności zadanie polegające na opracowaniu danych o różnorodnej jakości, nieustrukturyzowanych typu quan i qual wymagać może pracy, w której dynamicznie zmieniają się strategie analizy danych, sposoby przekształcania danych tekstowych. Artykuł opisuje przykład takiej właśnie „dynamicznej” metodyki. Wykazała ona swoją wartość w zadaniu polegającym na klasyfikacji wypowiedzi pisanych. W tak zarysowanym kontekście autor artykułu mierzy się z następującymi celami: (a) czy można zastosować oprogramowanie klasy CAQDAS do pracy półautomatycznej lub automatycznej zastępującej część manualnej pracy nad klasyfikacją wypowiedzi? (b) jak skonstruować metodykę klasyfikacji dla danych o różnorodnej jakości? (c) kiedy klasyfikacja automatyczna jest przydatna, a kiedy nie ma szans powodzenia? W artykule zaznaczone zostaną momenty, w których analityk sięga po wiedzę typową dla analiz danych jakościowych oraz te, kiedy wiedza z tego obszaru nie jest już wystarczająca do realizacji wskazanych celów (natural language processing, uczenie maszynowe). Przykład projektu będący tłem artykułu wymusił zastosowanie kilku narzędzi i języków wspierających pracę na danych. Praca nad transformacją, klasyfikacją oraz wizualizacją wyników wymagała zastosowania bazy MySQL oraz programów: R, QDA Miner, Wordstat, QlikSense. Roli i ograniczeniom narzędzi klasy CAQDAS poświęconych zostało także kilka uwag.
Projects which we work with—large volumes of text data that are acquired from various sources and stored in a variety of formats—rise many dilemmas of a methodological nature, often require unstandardized decisions and solutions. In particular, compiling data of various quality, unstructured types, and of quan and qual nature requires dynamic strategies, ideas, and ways of analysis. The article describes an example of this approach. It shows its value in classification of written statements. In such context, the author of the article faces the following objectives: (a) can we use CAQDASso that semiautomatic or automatic work would replace some manual work regarding classification of the expressions; (b) how to construct a classification methodology for data of various quality; (c) when the automatic classification is useful and when there is no chance of success? The article will be marked with moments in which the analyst reaches for knowledge typical for qualitative data analysis, and when the knowledge of this area is no longer sufficient to classify content (natural language processing, machine learning). An example of a project being the background of this article forced the use of several tools and languages to support work with the data. Work on the transformation, classification, and visualization of results required applications such as: MySQL, R, QDA Miner, WordStat, Qlik Sense. Role and limits of the computer-assisted qualitative data analysis software tools have also been noted.
Źródło:
Przegląd Socjologii Jakościowej; 2017, 13, 2; 128-143
1733-8069
Pojawia się w:
Przegląd Socjologii Jakościowej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Big Data in Innovation Research
Używanie Big Data w badaniach nad innowacjami
Autorzy:
Nawojczyk, Maria
Królewski, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/577410.pdf
Data publikacji:
2016-09
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Big Data
social sciences computing
analysis in real time
social innovation
social change
model to study innovations
Mixed-Methods Research
informatyka społeczna
analiza w czasie rzeczywistym
innowacje społeczne
zmiana społeczna
model badania innowacji
łączone metody badawcze
Opis:
One of the major contemporary trends revolutionizing social-sciences computing is, inter alia, the so-called Big Data effect, meaning fast and multidimensional analyses of large volumes of data. Technologies related to Big Data (Volume, Velocity, Variety) have considerable impact on the tools of contemporary sociologists, providing them with immense data resources in real time. Big Data is a term encompassing all data, the analysis of which may bring quantifi able benefi ts, not only in terms of business but also in science and research. Modern technologies change and greatly impact the methodology of research conducted, giving rise to numerous questions and doubts both strictly methodological and ethical in nature. One of the main challenges related to Big Data is the possibility of using large data agglomerates as early as at the stage of conceptualizing and operationalizing the subject of social-sciences computing. The possibility of transforming raw data into pieces of information, and then into knowledge, may soon become an indispensable and desirable element applied in social engineering in establishing the practical applications of research and in predicting future social phenomena. The latter could be particularly useful in such an important and sensitive fi eld as innovation research. Two cases of innovation: a social and technological ones are discussed in the paper. Using these two cases we will present a model of analyzing innovations in real time. The proposed model is a new approach to study innovations.
Jednym z głównych, współczesnych trendów przynoszących rewolucyjne zmiany w informatyce społecznej jest efekt Big Data, czyli szybkiej wielowymiarowej analizy wielkich zbiorów danych. Technologie związane z Big Data mają znaczący wpływ na narzędzia badawcze jakimi mogą posługiwać się współcześni socjologowie. Dają im one możliwość dostępu do źródeł danych w czasie rzeczywistym. Big Data to termin odnoszący się do wszystkich danych, których analiza może przynieść policzalne efekty, zarówno w kategoriach ekonomicznych jak i badawczych. Nowe technologie wpływają w znaczącym stopniu na metodologię badań, przynosząc szereg pytań i wątpliwości tak natury metodologicznej jak i etycznej. Jednym z wyzwań związanych z Big Data jest możliwość posługiwania się wielkimi zbiorami danych na wczesnych etapach konceptualizacji i operacjonalizacji problemów i hipotez badawczych. Przekształcanie surowych danych w informacje i wiedzę stanie się nieodłącznym elementem nie tylko inżynierii społecznej ale również praktyki badawczej dającej lepsze możliwości predykcyjne naukom społecznym niż to miało miejsce dotychczas. Te możliwości wydają się szczególnie użyteczne w badaniach nad innowacjami. Przedstawiamy je w szczegółach na dwóch przykładach innowacji – jednej technologicznej i drugiej społecznej. Przykłady te służą nam do zaprezentowania modelu, który stanowi nowe podejście do badania innowacji
Źródło:
Zagadnienia Naukoznawstwa; 2016, 52, 4(210); 431-450
0044-1619
Pojawia się w:
Zagadnienia Naukoznawstwa
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies