Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Marciniak, A" wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Probabilistyczne modele zjawisk przestrzennych w rolnictwie
Probabilistic models of spatial phenomena in agriculture
Autorzy:
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/291394.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
system informacji przestrzennej
GIS
probabilistyczna predykcja
probabilistyczna interpolacja
obiekt przestrzenny
sieci bayesowskie
probabilistic prediction
approximation prediction
spatial objects
Bayesian networks
Opis:
Niepewność, zarówno stochastyczna jak i epistemiczna, obecna w modelach zjawisk czaso-przestrzennych w rolnictwie uzasadnia zastosowanie metod probabilistycznych predykcji, wyjaśnianiu i aproksymacji obiektów przestrzennych. Z metodologicznego, obliczeniowego i inferencyjnego punktu widzenia odpowiednią technologią modelowania są tu sieci bayesowskie traktowane jako systemy reprezentacji wiedzy. W takim ujęciu modelowanie sprowadza się do translacji wiedzy z języka naturalnego na formalny i wykonywalny język sieci bayerowskich. Logiczną spójność i efektywność takiego rozumienia procesu modelowania pokazano na przykładzie budowy modelu aproksymacji i predykcji plonu pszenicy.
Uncertainty, both stochastic and epistemic, occurring in models of space-time phenomena in agriculture justifies application of probabilistic methods in predication, clarifying and approximation of spatial objects. From methodological, computational and inferential point of view, in this case proper modelling technologies include Bayesian networks treated as knowledge representation systems. From this perspective modelling comes down to translation of knowledge from natural language to formal and executable language of Bayesian networks. Logical coherence and effectiveness of this definition of modelling process is shown on the example of building a model of wheat crop approximation and prediction.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 193-199
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eksploracyjna analiza i modelowanie procesu ekstruzji błyskawicznych makaronów pełnoziarnistych
Exploratory analysis and modeling of extrusion-cooking process of precooked whole wheat pasta products
Autorzy:
Wójtowicz, A.
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/290522.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
makaron pełnoziarnisty
ekstruzja
modelowanie
sieci bayesowskie
whole wheat pasta
extrusion-cooking
modeling
Bayesian networks
Opis:
W pracy przedstawiono możliwości zastosowania sieci bayerowskich do analizy eksploracyjnej i modelowania procesu ekstruzji makaronów błyskawicznych. Wykrywanie i modelowanie zależności pomiędzy parametrami procesu i produktu przeprowadzono za pomocą trzech algorytmów uczenia maszynowego na danych empirycznych uzyskanych podczas procesu wytwarzania makaronów błyskawicznych: MST, Taboo oraz SopLEQ. Otrzymana topologia sieci była zgodna z przewidywaną strukturą zależności wewnątrzprocesowych pomiędzy parametrami procesu a cechami produktu, a oszacowane warunkowe rozkłady prawdopodobieństwa umożliwiły poprawne wnioskowanie predykcyjne i diagnostyczne.
The paper presents application of Bayesian Network to exploratory analysis and modeling of extrusion-cooking process of precooked wholewheat pasta products. For knowledge discovery in extrusion process data and modeling interdependencies of process and product parameters there were used machine learning methods available in BayesiaLab BN modeling system: MST, Taboo and SopLEQ. Resulted BN topology and conditional probability distributions assured satisfied accuracy of both predictive and diagnostic reasoning.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 7, 7; 237-244
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementation of computation process in a bayesian network on the example of unit operating costs determination
Implementacja procedury obliczeniowej w sieci bayesowskiej na przykładzie wyznaczania jednostkowych kosztów eksploatacji
Autorzy:
Kusz, A.
Marciniak, A.
Skwarcz, J.
Powiązania:
https://bibliotekanauki.pl/articles/1365961.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
agricultural machinery operation
computing processes
unit operating costs
Bayesian networks
eksploatacja maszyn rolniczych
procesy obliczeniowe
jednostkowe koszty eksploatacji
sieci bayesowskie
Opis:
In technical systems understood in terms of Agile Systems, the important elements are information flows between all phases of an object existence. Among these information streams computation processes play an important role and can be done automatically and also in a natural way should include consideration of uncertainty. This article presents a model of such a process implemented in a Bayesian network technology. The model allows the prediction of the unit costs of operation of a combine harvester based on the monitoring of dependent variables. The values of the decision variables representing the parameters of the machine’s operation and the intensity and the conditions for its operation, are known to an accuracy, which is defined by a probability distribution. The study shows, using inference mechanisms built into the network, how cost simulation studies of various situational options can be carried out.
W systemach technicznych rozumianych w kategoriach Agile Systems istotnym elementem są przepływy informacyjne pomiędzy wszystkimi fazami istnienia obiektu. Pośród tych strumieni informacyjnych istotną rolę odgrywają procesy obliczeniowe, które mogą być realizowane automatycznie a ponadto w naturalny sposób powinny umożliwiać uwzględnienie niepewności. W artykule przedstawiono przykład takiego procesu realizowanego w technologii sieci bayesowskiej. Model umożliwia predykcję jednostkowych kosztów eksploatacji kombajnu zbożowego na podstawie monitorowania wielkości zmiennych od których one zależą. Wartości zmiennych decyzyjnych reprezentujących parametry pracy maszyny oraz intensywność i warunki jej eksploatacji są znane z dokładnością do rozkładu prawdopodobieństwa. W pracy pokazano w jaki sposób wykorzystując mechanizmy wnioskowania wbudowane w sieci można prowadzić symulacyjne badania kosztów w różnych wariantach sytuacyjnych.
Źródło:
Eksploatacja i Niezawodność; 2015, 17, 2; 266-272
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie syntezy działań ochronnych w rolniczym procesie produkcyjnym
Modelling a protective action synthesis for the agricultural producution process
Autorzy:
Maksym, P.
Marciniak, A. W.
Kusz, A.
Powiązania:
https://bibliotekanauki.pl/articles/292152.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
rolniczy proces produkcyjny
działanie prewencyjno-interwencyjne
wspomaganie komputerowe
proces decyzyjny
sieci bayesowskie
agricultural production process
prevention activities
intervention activities
computer aiding
decision-making processes
Bayesian networks
Opis:
W artykule przedstawiono metodę modelowania problemów decyzyjnych, polegającą na syntezie działań prewencyjno-interwencyjnych w rolniczym procesie produkcyjnym. W zależności od spektrum zagrożenia, zbiór działań musi spełniać szereg ograniczeń wynikających z ich stosowania, pilności i wykonalności. Ostatecznym kryterium wyboru działania jest wynik predykcji straty plonu. Przedstawioną koncepcję budowy modelu oparto na technologii sieci bayesowskich.
The article presents a method of modelling decision problems which is based on a synthesis of prevention and intervention activities in the agricultural production process. Depending on the threat spectrum, the set of actions must comply with a number of limitations arising from their use, urgency and feasibility. The final criterion for the choice of action is the result of the yield loss prediction. The concept of building a model presented in the article is based on Bayesian network technology.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 4, 4; 213-220
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci bayesowskich do modelowania rolniczego procesu produkcyjnego
Application of Bayesian networks in modeling of agricultural production process
Autorzy:
Maksym, P.
Marciniak, A. W.
Kostecki, R.
Powiązania:
https://bibliotekanauki.pl/articles/287765.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
systemy reprezentacji wiedzy rolniczej
modelowanie
proces produkcyjny
sieci bayesowskie
reguły modularyzacji i kompozycji
agricultural knowledge representation systems
production process
modeling
Bayesian networks
modularization and composition rules
Opis:
Zastosowanie sieci bayesowskich do modelowania rolniczego procesu produkcyjnego oraz wspomagania decyzji odnośnie wyboru działań produkcyjnych przedstawiono z perspektywy budowania komputerowych systemów reprezentacji wiedzy. Metodykę budowania modeli sprowadzono do projektowania odpowiednich modułów rozpoznawania i predykcji i łączenia ich według określonych reguł. Zaproponowaną metodę omówiono na przykładzie modelowania produkcji pszenicy ozimej.
Problem of agricultural production modeling with Bayesian Networks is discussed from the perspective of building knowledge representation systems in agricultural domain. Universal conceptualization schema of acting in changing and uncertain environments as cognitive cycles, implies the need of two elementary modules of BN, namely the recognition (diagnostic) and prediction module. Building BN model of agricultural production process can be decomposed into the design of elementary modules repository and then appropriate composing entire models with modules. Conceptualization and design of diagnostic and predictive modules, and then their linkage rules was shown on the examples concerned winter wheat production.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 12(87), 12(87); 321-330
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie problemów decyzyjnych w integrowanym systemie produkcji rolniczej
Decision process modelling in the integrated agricultural production system
Autorzy:
Hołaj, H.
Kusz, A.
Maksym, P.
Marciniak, A. W.
Powiązania:
https://bibliotekanauki.pl/articles/286833.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
produkcja rolnicza
modelowanie zagrożeń
integrowanie źródeł informacji
wspomaganie procesów decyzyjnych
sieci bayesowskie
agricultural production
modeling threats
integration of information sources
supporting decision-making processes
Bayesian networks
Opis:
W artykule przedstawiono metodę modelowania problemu oceny zagrożenia w rolniczym procesie produkcyjnym i doboru konkretnego środka ochrony oraz wielkości adekwatnej dawki w integrowanym rolniczym procesie produkcyjnym. Podstawą decyzji jest diagnoza generatywna oparta o rozkład prawdopodobieństwa określony nad zbiorem możliwych decyzji. Pokazano w jaki sposób poprzez integrację niejednorodnych i niepewnych źródeł informacji można zmniejszyć niepewność w procesie podejmowania decyzji. Przedstawioną koncepcję budowy modelu oparto na technologii sieci bayesowskich.
The study presents the modelling method of a risk assessment problem in the agricultural production process and selection of an adequate protection measure and the size of the measure in the integrated technology of the plant production. The decision results from a generative diagnosis based on the distribution of decision probability under the set of possible decisions. The study presented how an integration of non-uniform and uncertain sources of information decreases uncertainty in the process of decision taking. The concept of a model structure was presented based on the technology of the Bayesian networks. Bayesian diagnosis model shows how integration of heterogeneous uncertain information sources decrease uncertainty in process of decision-making.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 6, 6; 53-60
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies