Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci probabilistyczne" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
The impact of regional diversification in the size of the general government sector on the economies of EU countries
Wpływ regionalnego zróżnicowania rozmiaru sektora finansów publicznych na gospodarki państw Unii Europejskiej
Autorzy:
Mroczek, Teresa
Skica, Tomasz
Rodzinka, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/582052.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
general government sector size
economy
public finance
impact of size of the general government sector on the economy
Bayesian networks
probabilistic inference
wielkość sektora instytucji rządowych i samorządowych
gospodarka
finanse publiczne
wpływ sektora instytucji rządowych i samorządowych na gospodarkę
sieci Bayesa
wnioskowanie probabilistyczne
Opis:
The main objective of this article is proving how the regional diversification in the size of general government sector influences the economies of EU countries. To achieve this, presenting both the size of the general government sector and of the economy, using variables which enable comparison in time and space, is essential. Bearing this in mind, the general government sector has been depicted by nine variables and the economy has been described by thirteen explanatory variables. The complexity of the phenomenon imposes the implementation of an unconventional approach in this field of exploration. Our approach is based on Intelligent Data Analysis (IDA) - a methodology that includes a set of techniques that can be applied for extracting useful knowledge from large amounts of data. In order to indicate the impact of regional diversification in the size of the general government sector on the EU countries’ economies, probabilistic techniques were applied – Bayesian Networks. Analysis made in the study showed that the largest impact of the GGS size on the economy was identified in Portugal and Slovakia. The results of the studies show that the most "responsive" to the size of the GGS variable describing the economy was gross domestic product per inhabitant. The research proved that the economies of some countries showed similarities in the effect of the size of the general government sector on the parameters of the economy. We have identified five groups of such countries.
Głównym celem artykułu jest ukazanie wpływu regionalnego zróżnicowania rozmiaru sektora finansów publicznych na gospodarki państw Unii Europejskiej. Do osiągnięcia tego celu konieczne jest zobrazowanie rozmiaru zarówno sektora finansów publicznych, jak i gospodarki – za pośrednictwem zmiennych umożliwiających ich porównanie w czasie i w przestrzeni. Mając to na uwadze, sektor finansów publicznych zobrazowano za pośrednictwem dziewięciu zmiennych, a gospodarka została opisana za pomocą trzynastu zmiennych wyjaśniających. Złożoność tego zjawiska wymaga realizacji niekonwencjonalnego podejścia w tej dziedzinie badań. Podejście autorów opiera się na inteligentnej analizie danych (IDA) – metodologii obejmującej zestaw technik, które można zastosować do wydobywania użytecznej wiedzy z dużej ilości danych. W celu wskazania opisanych związków w artykule zastosowało techniki probabilistyczne – sieci Bayesa.
Źródło:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu; 2019, 63, 2; 65-80
1899-3192
Pojawia się w:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistyczne modele zjawisk przestrzennych w rolnictwie
Probabilistic models of spatial phenomena in agriculture
Autorzy:
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/291394.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
system informacji przestrzennej
GIS
probabilistyczna predykcja
probabilistyczna interpolacja
obiekt przestrzenny
sieci bayesowskie
probabilistic prediction
approximation prediction
spatial objects
Bayesian networks
Opis:
Niepewność, zarówno stochastyczna jak i epistemiczna, obecna w modelach zjawisk czaso-przestrzennych w rolnictwie uzasadnia zastosowanie metod probabilistycznych predykcji, wyjaśnianiu i aproksymacji obiektów przestrzennych. Z metodologicznego, obliczeniowego i inferencyjnego punktu widzenia odpowiednią technologią modelowania są tu sieci bayesowskie traktowane jako systemy reprezentacji wiedzy. W takim ujęciu modelowanie sprowadza się do translacji wiedzy z języka naturalnego na formalny i wykonywalny język sieci bayerowskich. Logiczną spójność i efektywność takiego rozumienia procesu modelowania pokazano na przykładzie budowy modelu aproksymacji i predykcji plonu pszenicy.
Uncertainty, both stochastic and epistemic, occurring in models of space-time phenomena in agriculture justifies application of probabilistic methods in predication, clarifying and approximation of spatial objects. From methodological, computational and inferential point of view, in this case proper modelling technologies include Bayesian networks treated as knowledge representation systems. From this perspective modelling comes down to translation of knowledge from natural language to formal and executable language of Bayesian networks. Logical coherence and effectiveness of this definition of modelling process is shown on the example of building a model of wheat crop approximation and prediction.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 193-199
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Empirical Comparison of Methods of Data Discretization in Learning Probabilistic Models
Porównanie metod dyskretyzacji danych w uczeniu modeli probabilistycznych
Autorzy:
Wójciak, M.
Łupińska-Dubicka, A.
Powiązania:
https://bibliotekanauki.pl/articles/88392.pdf
Data publikacji:
2018
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
dyskretyzacja
zmienne typu ciągłego
modele probabilistyczne
sieci Bayesa
klasyfikacja
discretization
continuous feature
probabilistic models
Bayesian networks
classification
Opis:
Very often statistical method or machine learning algorithms can handle discrete attributes only. And that is why discretization of numerical data is an important part of the pre–processing. This paper presents the results of the problem of data discretization in learning quantitative part of probabilistic models. Four data sets taken from UCI Machine Learning Repository were used to learn the quantitative part of the Bayesian networks. The continuous variables were discretized using two supervised and two unsupervised discretization methods. The main goal of this paper was to study whether method of data discretization in given data set has an influence on model’s reliability. The accuracy was defined as the percentage of correctly classified records.
Bardzo często algorytmy uczenia maszynowego nie są przystosowane do korzystania ze zmiennych ciągłych. Z tego powodu dyskretyzacja danych jest istotną częścią wstępnego przetwarzania. W artykule przedstawiono wyniki prac nad problemem dyskretyzacji danych w uczeniu modeli probabilistycznych. Cztery zestawy danych pobrane z repozytorium uczenia maszynowego UCI zostały wykorzystane do nauczenia parametrów ilościowej części sieci bayesowskich. Występujące w wybranych zbiorach zmienne ciągłe były dyskretyzowane przy użyciu dwóch metod nadzorowanych i dwóch nienadzorowanych. Głównym celem tego artykułu było zbadanie, czy metoda dyskretyzacji danych w danym zbiorze ma wpływ na niezawodność modelu. Dokładność metod była definiowana jako odsetek poprawnie sklasyfikowanych rekordów.
Źródło:
Advances in Computer Science Research; 2018, 14; 177-192
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies