Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Huang, H. H." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Reliability and Risk Assessment of Aircraft Electric Systems
Niezawodność i ocena ryzyka układu elektrycznego samolotu
Autorzy:
He, L.
Yin, C.
Peng, W.
Yuan, R.
Huang, H.-Z.
Powiązania:
https://bibliotekanauki.pl/articles/301113.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
interval analytic hierarchy process
interval eigenvector method
Bayesian network
information fusion
risk assessment
proces przedziałowej hierarchii analitycznej
metoda przedziałowych wektorów własnych
sieć bayesowska
fuzja informacji
ocena ryzyka
Opis:
It is rather difficult in identifying the fault location and performing risk assessment for complex electronic systems. In this paper a reliability assessment method based on the interval analytic hierarchy process (IAHP) and Bayesian network is proposed to facilitate reliability and risk assessment. After considering the major fault factors, the interval eigenvector method (IEM) is also presented to assess the reliability and comprehensive weights of subsystems. The conditional probability matrices for the factors of risk are defined using an inference rule. Then an updating model of information fusion in the context of Bayesian network is established to assess the risk of system. The proposed method is demonstrated through the risk assessment of an aircraft electric system. The result of the illustrative example shows that the proposed method can not only incorporate the evidence information, but also synthesize all the historical information. A further dynamic adjustment in the safety and risk priority of control measures is quite effective to improve the reliability while mitigating the risk of the electric system.
Lokalizacja uszkodzeń oraz ocena bezpieczeństwa i ryzyka w przypadku złożonych systemów elektronicznych jest zadaniem dość trudnym. W niniejszej pracy zaproponowano metodę prognozowania niezawodności opartą na procesie przedziałowej hierarchii analitycznej (IAHP), która ma na celu ułatwienie diagnozy uszkodzeń i kontroli ryzyka. Po rozważeniu głównych czynników wywołujących uszkodzenia, zaprezentowano metodę przedziałowych wektorów własnych oraz zdefiniowano, przy użyciu reguły wnioskowania, macierze prawdopodobieństwa dla czynników wpływających na bezpieczeństwo i ryzyko. Następnie, stworzono odnawialny model fuzji informacji w kontekście wnioskowania bayesowskiego służący do oceny stanu zagrożenia Udowodniono, iż włączenie wiedzy eksperckiej do dynamicznej symulacji ułatwia lokalizację uszkodzeń oraz pozwala uzyskać informacje dotyczące diagnozy uszkodzeń. Studium przypadku pokazuje, że dynamiczne dostosowanie priorytetowości związanej z bezpieczeństwem i ryzykiem stosowanych środków kontroli w sposób dość skuteczny zwiększa niezawodność przy jednoczesnym zminimalizowaniu ryzyka w złożonym systemie elektronicznym.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 4; 497-506
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System reliability modeling and assessment for solar array drive assembly based on bayesian networks
Modelowanie i ocena niezawodności systemu w oparciu o sieci bayesowskie na przykładzie układu napędu paneli słonecznych
Autorzy:
Li, Y. F.
Mi, J.
Huang, H. Z.
Xiao, N. C.
Zhu, S. P.
Powiązania:
https://bibliotekanauki.pl/articles/302154.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
drzewo uszkodzeń
dynamiczne drzewo uszkodzeń
sieć bayesowska
niezawodność systemu
układ napędu paneli słonecznych
fault tree
dynamic fault tree
Bayesian network
system reliability
solar array drive assembly
Opis:
Along with the increase of complexity in engineering systems, there exist many dynamic characteristics within the system failure process, such as sequence dependency, functional dependency and spares. Markov-based dynamic fault trees can figure out the modeling of systems with these characteristics. However, when confronted with the issue of state space explosion resulted from the growth of system complexity, the Markov-based approach is no longer efficient. In this paper, we combine the Bayesian networks with the dynamic fault trees to model the reliability of such types of systems. The inference technique of Bayesian network is utilized for reliability assessment and fault probability estimation. The solar array drive assembly is used to demonstrate the effectiveness of this method.
Wraz ze wzrostem złożoności w systemach technicznych, pojawia się wiele charakterystyk dynamicznych w ramach procesu awarii systemu, takich jak zależność sekwencyjna, zależność funkcjonalna czy zabezpieczające elementy zapasowe. Oparte na koncepcjach Markowa dynamiczne drzewa uszkodzeń mogą posłużyć do modelowania systemów z powyższymi charakterystykami. Jednak w konfrontacji z problemem eksplozji stanów wynikającym ze wzrostu złożoności systemu, podejście oparte na teoriach Markowa nie jest już skuteczne. W niniejszej pracy łączymy sieci bayesowskie z dynamicznymi drzewami uszkodzeń w celu modelowania niezawodności tego typu systemów. Technikę wnioskowania sieci bayesowskiej wykorzystano do oceny niezawodności i prawdopodobieństwa wystąpienia uszkodzenia. Skuteczność niniejszej metody wykazano na przykładzie układu napędu paneli słonecznych.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 2; 117-122
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies