- Tytuł:
- Bacilli bacterial cell image analysis using active contour segmentation with SVM classifier
- Autorzy:
- Bannigidad, Parashuram
- Powiązania:
- https://bibliotekanauki.pl/articles/1062913.pdf
- Data publikacji:
- 2019
- Wydawca:
- Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
- Tematy:
-
Active contour method
Bacillus
Bacillus subtilis
Bacterial cell image analysis
Cell classification
Cocobacilli
Diplobacilli
Palisades
SVM
Segmentation
Streptobacilli - Opis:
- The main aim of the present study is to develop an automatic method to identify and classify the different cell types of bacilli bacterial cells in digital microscopic cell images using active contour method. Snakes, or active contours, are used widely in computer vision and machine learning applications, particularly to locate object boundaries. GLCM, HOG and LBP features are used to identify the arrangement of bacilli bacterial cells, namely, bacillus, cocobacilli, diplobacilli, palisades and streptobacilli using SVM classifier. The current methods rely on the subjective reading of profiles by a human expert based on the various manual staining methods. In this paper, it is proposed a method for bacilli bacterial cell classification by segmenting digital bacterial cell images using active contour model and extracting GLCM, HOG and LBP features. The experimental results proves that, the SVM classifier has yielded an overall accuracy of 97.2% with GLCM features, HOG features has yielded an accuracy of 74.8% and LBP features yielded 91.2% accuracy. The GLCM features with SVM classifier has got good classification results compared to HOG and LBP feature sets for bacilli bacteria cell types.
- Źródło:
-
World Scientific News; 2019, 127, 3; 369-376
2392-2192 - Pojawia się w:
- World Scientific News
- Dostawca treści:
- Biblioteka Nauki