- Tytuł:
- Exponential representations of injective continuous mappings in radial sets
- Autorzy:
-
Jastrzębska, Magdalena
Partyka, Dariusz - Powiązania:
- https://bibliotekanauki.pl/articles/2078954.pdf
- Data publikacji:
- 2021
- Wydawca:
- Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
- Tematy:
-
Angular parametrization
cuttings of the plane
functional equations
fundamental group of the unit circle
lifted mapping
logarithmic functions of complex variable
quasiconformal mappings - Opis:
- By a radial set we understand a non-empty set \(A \subset \mathbb{C} \setminus \{0\}\) such that for every point \(z\in A\) the circle with centre at the origin and passing through \(z\) is included in \(A\). We show in a detailed manner that every continuous and injective function \(F : A \to \mathbb{C} \setminus \{0\}\) can be represented by means of the natural exponential function \(\text{exp}\) and a certain continuous function \(\varPhi : \text{Ei}(A) \to \mathbb{C}\), where \(\text{Ei}(A)\) is the set of all \(z \in \mathbb{C}\) with the property \(\text{exp}(iz) \in A\). The representation is given by \(F(\text{exp}(iz)) = \text{exp}(i\varPhi (z))\) for \(z \in \text{Ei}(A)\). We also touch the problem of the injectivity of \(\varPhi\).
- Źródło:
-
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2021, 75, 1; 37-51
0365-1029
2083-7402 - Pojawia się w:
- Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
- Dostawca treści:
- Biblioteka Nauki