- Tytuł:
- Infinitely many solutions for some nonlinear supercritical problems with break of symmetry
- Autorzy:
-
Candela, Anna Maria
Salvatore, Addolorata - Powiązania:
- https://bibliotekanauki.pl/articles/255401.pdf
- Data publikacji:
- 2019
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
quasilinear elliptic equation
weak Cerami-Palais-Smale condition
Ambrosetti-Rabinowitz condition break of symmetry
perturbation method
supercritical growth - Opis:
- In this paper, we prove the existence of infinitely many weak bounded solutions of the nonlinear elliptic problem [formula], where [formula] is an open bounded domain, N ≥ 3, and [formula] are given functions, with[formula], such that A(x, •, •) is even and g(x, •) is odd. To this aim, we use variational arguments and the Rabinowitz's perturbation method which is adapted to our setting and exploits a weak version of the Cerami-Palais-Smale condition. Furthermore, if [formula] grows fast enough with respect to t, then the nonlinear term related to g(x,t) may have also a supercritical growth.
- Źródło:
-
Opuscula Mathematica; 2019, 39, 2; 175-194
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki