Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ASIC" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
A Survey on Fault-Tolerant Methodologies for Deep Neural Networks
Przegląd metod zapewniających odporność na błędy dla głębokich sieci neuronowych
Autorzy:
Syed, Rizwan Tariq
Ulbricht, Markus
Piotrowski, Krzysztof
Krstic, Milos
Powiązania:
https://bibliotekanauki.pl/articles/27312443.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fault tolerance
reliability
FPGAs
ASICs
neural networks
odporność na błędy
niezawodność
układy FPGA
układy ASIC
sieci neuronowe
Opis:
Asignificant rise in Artificial Intelligence (AI) has impacted many applications around us, so much so that AI has now been increasingly used in safety-critical applications. AI at the edge is the reality, which means performing the data computation closer to the source of the data, as opposed to performing it on the cloud. Safety-critical applications have strict reliability requirements; therefore, it is essential that AI models running on the edge (i.e., hardware) must fulfill the required safety standards. In the vast field of AI, Deep Neural Networks (DNNs) are the focal point of this survey as it has continued to produce extraordinary outcomes in various applications i.e. medical, automotive, aerospace, defense, etc. Traditional reliability techniques for DNNs implementation are not always practical, as they fail to exploit the unique characteristics of the DNNs. Furthermore, it is also essential to understand the targeted edge hardware because the impact of the faults can be different in ASICs and FPGAs. Therefore, in this survey, first, we have examined the impact of the fault in ASICs and FPGAs, and then we seek to provide a glimpse of the recent progress made towards the fault-tolerant DNNs. We have discussed several factors that can impact the reliability of the DNNs. Further, we have extended this discussion to shed light on many state-of-the-art fault mitigation techniques for DNNs.
Znaczący rozwój sztucznej inteligencji (SI) wpływa na wiele otaczających nas aplikacji, do tego stopnia, że SI jest obecnie coraz częściej wykorzystywana w aplikacjach o krytycznym znaczeniu dla bezpieczeństwa. Sztuczna inteligencja na brzegu sieci (Edge) jest rzeczywistością, co oznacza wykonywanie obliczeń na danych bliżej źródła danych, w przeciwieństwie do wykonywania ich w chmurze. Aplikacje o krytycznym znaczeniu dla bezpieczeństwa mają wysokie wymagania dotyczące niezawodności; dlatego ważne jest, aby modele SI działające na brzegu sieci (tj. sprzęt) spełniały wymagane standardy bezpieczeństwa. Z rozległej dziedziny sztucznej inteligencji, głębokie sieci neuronowe (DNN) są centralnym punktem tego badania, ponieważ nadal przynoszą znakomite wyniki w różnych zastosowaniach, tj. medycznych, motoryzacyjnych, lotniczych, obronnych itp. Tradycyjne techniki niezawodności implementacji w przypadku DNN nie zawsze są praktyczne, ponieważ nie wykorzystują unikalnych cech DNN. Co więcej, istotne jest również zrozumienie docelowego sprzętu brzegowego, ponieważ wpływ usterek może być różny w układach ASIC i FPGA. Dlatego też w niniejszym przeglądzie najpierw zbadaliśmy wpływ usterek w układach ASIC i FPGA, a następnie staramy się zapewnić wgląd w ostatnie postępy poczynione w kierunku DNN odpornych na błędy. Omówiliśmy kilka czynników, które mogą wpływać na niezawodność sieci DNN. Ponadto rozszerzyliśmy tę dyskusję, aby rzucić światło na wiele najnowocześniejszych technik ograniczania błędów w sieciach DNN.
Źródło:
Pomiary Automatyka Robotyka; 2023, 27, 2; 89--98
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies