Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forecasting model" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Metodyka wielokryterialnej analizy zmian stóp bezrobocia wybranych gospodarek światowych oraz prognozowanie modelem ARIMA stopy bezrobocia USA na przyszłość
Methodology of Multi-criteria Analysis of Changes in Unemployment Rates in Selected World Economies and Forecasting with the ARIMA Model of the US Unemployment Rate for the Future
Autorzy:
Kozicki, Bartosz
Žukovskis, Jan
Mizura, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/23945046.pdf
Data publikacji:
2020-03-23
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
bezrobocie
prognozowanie
model ARIMA
unemployment
forecasting
ARIMA model
Opis:
W artykule przedstawiono metodykę wielokryterialnej analizy stóp procentowych bezrobocia w wybranych gospodarkach światowych oraz próby przeprowadzenia prognozowania stopy bezrobocia w USA na trzy przyszłe okresy. Badania rozpoczęto od analizy wielowymiarowej zmienności stóp procentowych bezrobocia w wybranych gospodarkach światowych w ujęciu sześciomiesięcznym w latach 2011-2018. Następnie przeprowadzono jej ocenę. Dalszym etapem badania była analiza i ocena szeregu czasowego danych dotyczących stóp procentowych bezrobocia w USA w ujęciu dynamicznym. Następnie zbudowano model prognostyczny ARIMA i wykonano prognozowanie na trzy przyszłe okresy.
The article presents the methodology of multi-criteria analysis of unemployment interest rates in selected world economies, and an attempt to forecast the unemployment rate in the USA for three future periods. The research began with an analysis of the multidimensional volatility of unemployment interest rates in selected world economies on a six-month basis in 2011-2018. It was then assessed. The next stage of the study was the analysis and evaluation of the time series of data on the US unemployment interest rates in dynamic terms. Then, the ARIMA forecast model was built and forecasting for three future periods was performed.
Źródło:
Nowoczesne Systemy Zarządzania; 2020, 15, 1; 71-85
1896-9380
2719-860X
Pojawia się w:
Nowoczesne Systemy Zarządzania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time series analysis of reference crop evapotranspiration for Bokaro District, Jharkhand, India
Analiza serii czasowych ewapotranspiracji potencjalnej upraw w dystrykcie Bokaro, Jharkhand, Indie
Autorzy:
Gautam, R.
Sinha, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/293179.pdf
Data publikacji:
2016
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
ARIMA model
evapotranspiration
forecasting
time series
ewapotranspiracja
model ARIMA
prognozowanie
serie czasowe
Opis:
Evapotranspiration is the one of the major role playing element in water cycle. More accurate measurement and forecasting of Evapotranspiration would enable more efficient water resources management. This study, is therefore, particularly focused on evapotranspiration modelling and forecasting, since forecasting would provide better information for optimal water resources management. There are numerous techniques of evapotranspiration forecasting that include autoregressive (AR) and moving average (MA), autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), Thomas Feiring, etc. Out of these models ARIMA model has been found to be more suitable for analysis and forecasting of hydrological events. Therefore, in this study ARIMA models have been used for forecasting of mean monthly reference crop evapotranspiration by stochastic analysis. The data series of 102 years i.e. 1224 months of Bokaro District were used for analysis and forecasting. Different order of ARIMA model was selected on the basis of autocorrelation function (ACF) and partial autocorrelation (PACF) of data series. Maximum likelihood method was used for determining the parameters of the models. To see the statistical parameter of model, best fitted model is ARIMA (0, 1, 4) (0, 1, 1)12.
Ewapotranspiracja jest jednym z głównych elementów obiegu wody. Dokładniejsze pomiary i możliwość prognozowania ewapotranspiracji mogłyby umożliwić wydajniejsze zarządzanie zasobami wodnymi. Dlatego prezentowane w niniejszej pracy badania skoncentrowane były na modelowaniu i prognozowaniu ewapotranspiracji, ponieważ prognozowanie zapewni więcej informacji do optymalnego zarządzania zasobami wodnymi. Istnieje wiele technik prognozowania ewapotranspiracji, takich jak autoregresja (AR), średnia ruchoma (MA), autoregresyjna średnia ruchoma (ARMA), autoregresyjna zintegrowana średnia ruchoma (ARIMA), metoda Thomasa– Feiringa i inne. Stwierdzono, że spośród nich ARIMA jest bardziej odpowiednia do analizy i prognozowania zdarzeń hydrologicznych. Z tego powodu wykorzystano model ARIMA do prognozowania miesięcznych średnich wartości ewapotranspiracji potencjalnej poprzez analizę stochastyczną. Do analiz i prognozowania użyto serii danych ze 102 lat (1224 miesiące) z dystryktu Bokaro. Na podstawie funkcji autokorelacji (ACF) i cząstkowych autokorelacji (PACF) serii danych wybrano różny porządek modelu ARIMA. Do wyznaczenia parametrów modelu wykorzystano metodę maksymalnego prawdopodobieństwa. Najlepiej dostosowanymi parametrami statystycznymi modelu okazały się ARIMA (0, 1, 4) (0, 1, 1)12.
Źródło:
Journal of Water and Land Development; 2016, 30; 51-56
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The energy consumption forecasting in Mongolia based on Box-Jenkins method (Arima model)
Autorzy:
Zolboo, Gansukh
Adiya, Bor
Bilguun, Enkhbayar
Powiązania:
https://bibliotekanauki.pl/articles/101770.pdf
Data publikacji:
2019
Wydawca:
Instytut Polityki Energetycznej im. Ignacego Łukasiewicza
Tematy:
energy forecasting
energy consumption
ARIMA model
Box-Jenkins method
Opis:
The primary products of the power industry are electric energy and thermal energy. Thus, forecasting electric energy consumption is significant for short and long term energy planning. ARIMA model has adopted to forecast energy consumption because of its precise prediction for energy consumption. Our result has shown that annual average electric energy consumption will be 10,628 million kWh per year during 2019-2030 which approximately 3.3 percent growth per annum. At the moment, there is not a practice solution for the storage of electricity in Mongolia. Therefore, energy supply and demand have to be balanced in real-time for operational stability. Without an accurate forecast, the end-users may experience brownouts or even blackouts or the industry could be faced with sudden accidents due to the energy demand. For this reason, energy consumption forecasting is essential to power system stability and reliability.
Źródło:
Energy Policy Studies; 2019, 1 (3); 70-77
2545-0859
Pojawia się w:
Energy Policy Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries
Autorzy:
Kufel, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/22444425.pdf
Data publikacji:
2020
Wydawca:
Instytut Badań Gospodarczych
Tematy:
Covid-19 epidemic
ARIMA model
forecasting
infection control
non-pharmaceutical intervention
Opis:
Research background: On 11 March 2020, the Covid-19 epidemic was identified by the World Health Organization (WHO) as a global pandemic. The rapid increase in the scale of the epidemic has led to the introduction of non-pharmaceutical countermeasures. Forecast of the Covid-19 prevalence is an essential element in the actions undertaken by authorities. Purpose of the article: The article aims to assess the usefulness of the Auto-regressive Integrated Moving Average (ARIMA) model for predicting the dynamics of Covid-19 incidence at different stages of the epidemic, from the first phase of growth, to the maximum daily incidence, until the phase of the epidemic's extinction. Methods: ARIMA(p,d,q) models are used to predict the dynamics of virus distribution in many diseases. Model estimates, forecasts, and the accuracy of forecasts are presented in this paper. Findings & Value added: Using the ARIMA(1,2,0) model for forecasting the dynamics of Covid-19 cases in each stage of the epidemic is a way of evaluating the implemented non-pharmaceutical countermeasures on the dynamics of the epidemic.
Źródło:
Equilibrium. Quarterly Journal of Economics and Economic Policy; 2020, 15, 2; 181-204
1689-765X
2353-3293
Pojawia się w:
Equilibrium. Quarterly Journal of Economics and Economic Policy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identifying an Appropriate Forecasting Model for Forecasting Total Import of Bangladesh
Autorzy:
Khan, Tanvir
Powiązania:
https://bibliotekanauki.pl/articles/465624.pdf
Data publikacji:
2011
Wydawca:
Główny Urząd Statystyczny
Tematy:
ARIMA model
Holt Winters’ trend and seasonality method
VAR model
Forecasting accuracy
Out-of-sample accuracy measurement
Opis:
Forecasting future values of economic variables are some of the most critical tasks of a country. Especially the values related to foreign trade are to be forecasted efficiently as the need for planning is great in this sector. The main objective of this research paper is to select an appropriate model for time series forecasting of total import (in taka crore) of Bangladesh. The decision throughout this study is mainly concerned with seasonal autoregressive integrated moving average (SARIMA) model, Holt-Winters’ trend and seasonal model with seasonality modeled additively and vector autoregressive model with some other relevant variables. An attempt was made to derive a unique and suitable forecasting model of total import of Bangladesh that will help us to find forecasts with minimum forecasting error.
Źródło:
Statistics in Transition new series; 2011, 12, 1; 179-192
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies