Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "churn" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The usage of neural networks to forecast for churn of telecommunications clients
Wykorzystanie sztucznych sieci neuronowych do prognozowania zjawiska churn wśród klientów usług telekomunikacyjnych
Autorzy:
Wojda, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/389805.pdf
Data publikacji:
2017
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
churn
artificial neural network
ANN
CLV
telecommunications
sztuczne sieci neuronowe
telekomunikacja
Opis:
This paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of leaving, while only 57% of those identified as in danger of leaving actually did so and stopped using the company's services.
W pracy przedstawiono próbę wykorzystania sztucznej sieci neuronowej do badania zjawiska churn wśród klientów operatora telekomunikacyjnego. Podjęto próbę stworzenia modelu danych opartego o całkowitą wartość klienta (CLV), a nie tylko jego aktywność. Do przeprowadzenia eksperymentów wykorzystana została wielowarstwowa sztuczna sieć neuronowa. Uzyskano 99% skuteczność identyfikowania klientów nie zagrożonych odejściem, natomiast tylko 57% klientów wskazanych jako zagrożonych odejściem w rzeczywistości zaprzestało korzystania z usług firmy.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2017, 20; 5-14
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Efficient Hybrid Classifier Model for Customer Churn Prediction
Autorzy:
Anitha, M. A.
Sherly, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/2200701.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
customer churn prediction
bag of learners
ANN
SVM
regression
associative classifier
Apriori Algorithm
Opis:
Customer churn prediction is used to retain customers at the highest risk of churn by proactively engaging with them. Many machine learning-based data mining approaches have been previously used to predict client churn. Although, single model classifiers increase the scattering of prediction with a low model performance which degrades reliability of the model. Hence, Bag of learners based Classification is used in which learners with high performance are selected to estimate wrongly and correctly classified instances thereby increasing the robustness of model performance. Furthermore, loss of interpretability in the model during prediction leads to insufficient prediction accuracy. Hence, an Associative classifier with Apriori Algorithm is introduced as a booster that integrates classification and association rule mining to build a strong classification model in which frequent items are obtained using Apriori Algorithm. Also, accurate prediction is provided by testing wrongly classified instances from the bagging phase using generated rules in an associative classifier. The proposed models are then simulated in Python platform and the results achieved high accuracy, ROC score, precision, specificity, F-measure, and recall.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 1; 11--18
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies