- Tytuł:
- Geometric Phase for Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems
- Autorzy:
-
Mendaš, I.
Burić, N.
Popović, D.
Prvanović, S.
Radonjić, M. - Powiązania:
- https://bibliotekanauki.pl/articles/1204876.pdf
- Data publikacji:
- 2014-08
- Wydawca:
- Polska Akademia Nauk. Instytut Fizyki PAN
- Tematy:
-
03.65.Aa
03.65.Vf
07.05.Dz - Opis:
- Geometric phase for novel analytical solutions (Barnes and Das Sarma) of time-dependent two-level quantum systems is discussed, specifically for a general single-axis driving term, which is represented by a function J(t) in the Hamiltonian, and its corresponding evolution operator. It is demonstrated how general results for corresponding phases (total, dynamic and geometric) can be obtained. Using a specific case, it was found that over time in which the driving field is appreciably different from zero, the corresponding geometric phase changes (in the specific example by Δ β ≈ 0.8 radians) thus enabling detection. The results are relevant to qubit control and to quantum computing applications.
- Źródło:
-
Acta Physica Polonica A; 2014, 126, 3; 670-672
0587-4246
1898-794X - Pojawia się w:
- Acta Physica Polonica A
- Dostawca treści:
- Biblioteka Nauki